...... Corporation

ABEL Design Manual

Version 8.0

35 pages about ispDesignExpert removed



Chapter 4 ABEL-HDL Design Considerations — ............ ... ..., 37

Overview of ABEL-HDL Design Considerations . ... ........... ... 38
Hierarchy in ABEL-HDL . . . . . ... . e e e e e 38
Instantiating a Lower-level Module in an ABEL-HDL Source. . ..................... 39
Identifying 1/0O Ports in the Lower-level Module. . . ........ ... ................. 39
Declaring Lower-level Modules in the Top-level Source. . ...................... 40
Instantiating Lower-level Modules in Top-level Source. . ....................... 40
Hierarchy and Retargetingand Fitting . . . . .. ... ... .. e 41
Redundant NOdes . . . . ... 41
Merging Feedbacks. . . . ... .. 41
Post-linked Optimization . . . . .. ... 41
Hierarchical Design Considerations. . . ...t e 42
Prevent Node Collapsing . . . ... oo 42
Node Collapsing. . . . . oot 42
Selective CollapsSing . . . . .o 42
Pin-to-pin Language Features . . . ... ... i 43
Device-independence vs. Architecture-independence. . .. ........ ... ... ... ....... 43
Signal AttribuUteS . . . ... e 43
Signal Dot EXIENSIONS . . . ..o 43
Pin-to-pin vs. Detailed Descriptions for Registered Designs . . . . ... ... 44
Using := for Pin-to-pin DeSCrIPtioNS . . ... ...t 44
Resolving AmMDIQUItIES. . . . ..o 44
Detailed Circuit DESCIPONS . . . . ... 45
Detailed Descriptions: Designing for Macrocells. . . ............ ... .. ... ....... 45
Examples of Pin-to-pin and Detailed Descriptions . . . . ... ... i 47
Pin-to-pin Module DesCription. . . . .. ... 47
Detailed Module DescCription . . . ... ... i 47
Detailed Module with Inverted Outputs. . . . ... ... . e 48
When to Use Detailed DeSCriptions . . . . . . ..o 50
Using := for Alternative Flip-flop Types . ....... ... i . 50
Using Active-low Declarations . . . ... .. 51
Polarity CoNtrol . .. ... 53
Polarity Control with IStype. . . . . ... 53
Using Istype ‘neg’, ‘pos’, and ‘dc’ to Control Equation and Device Polarity ......... 53

Using ‘invert’ and ‘buffer’ to Control Programmable Inversion .. ................. 54
Flip-flop EQUAtiONS . . . . . . 54
Feedback Considerations — DOt EXtENSIONS . . . . . ..ottt 55
Dot Extensions and Architecture-Independence . .............. ... 56
Dot Extensions and Detail Design DescCriptions. . . .. ... ... 58
Using Don’t Care Optimization. . . . ... ... e e e e 60
Exclusive OR EQUALIONS . . . ... e e 62
Optimizing XOR DeVICES . . . .ottt e e e e e 62
Using XOR Operators in Equations . . . ... . e 62
Using Implied XORS in EQUALIONS . . . . . ... 62
Using XORs for Flip-flop Emulation . . .......... .. ... . . . . . . .. 63

JK Flip-Flop Emulation . . ... . . 63

ABEL Design Manual 5



State MaChiNeS . . . . . o e 65

Use Identifiers Rather Than Numbersfor States . . . ......... ... ... . . . ... 65
Powerup Register States . . .. ... 67
Unsatisfied Transition Conditions. . . ... e 67
D-Type FIip-FIops . . . .o o 67

Other Flip-flops . . . .. oo 68
Precautions for Using Don’t Care Optimization .. ..., 68
Number Adjacent States for One-bitChange. . ...... ... ... ... .. ... ... . . .. ..... 72
Use State Register Outputs to Identify States . . .......... ... .. ... ... ... ... .... 72
State Register Bit Values . ... ... 73

Using Symbolic State DescCriptions. . . . ... e 74
Symbolic Reset Statements . . ... . 74
Symbolic TEStVECIOrS . . .. 75

UsiNg CompPlemMENt ArTayS. . . . ettt e e e e e e e 75
ABEL-HDL and Truth Tables. . . .. ... e 77
Basic Syntax - Simple Examples . . . ... ... 78
Influence of Signal polarity . . ... . . 79
Using .X.in Truth tables conditions . . ......... ... . . . . . . 80
Using .X.ontheright side . ... ... e 81
Special case: Empty ON-Set. . . ... ... 82
Registered Logic in Truth tables. . . ... ... . 82

ABEL Design Manual 6



chapter 4 ABEL-HDL Design Considerations

This chapter covers the following topics:

m  Overview of ABEL-HDL Design Considerations
» Hierarchy in ABEL-HDL

m Hierarchical Design Considerations

= Node Collapsing

= Pin-to-pin Language Features

= Pin-to-pin vs. Detailed Descriptions for Registered Designs
= Using Active-low Declarations

= Polarity Control

= Flip-flop Equations

s Feedback Considerations — Dot Extensions

= Using Don’'t Care Optimization

= Exclusive OR Equation

= State Machines

»  Using Complement Arrays

= ABEL-HDL and Truth Tables

ABEL Design Manual

37



Overview of ABEL-HDL Design Considerations

Overview of ABEL-HDL Design Considerations

This chapter discusses issues you need to consider when you create a design with
ABEL-HDL. The topics covered are listed below:

Hierarchy in ABEL-HDL

Hierarchical Design Considerations

Node Collapsing

Pin-to-Pin Architecture-independent Language Features
Pin-to-Pin Vs. Detailed Descriptions for Registered Designs
Using Active-low Declarations

Polarity Control

Istypes and Attributes

Flip-flop Equations

Feedback Considerations — Using Dot Extensions
@DCSET Considerations and Precautions

Exclusive OR Equations

State Machines

Using Complement Arrays

ABEL-HDL and Truth Tables

Hierarchy in ABEL-HDL

You use hierarchy declarations in an upper-level ABEL-HDL source to refer to
(instantiate) an ABEL-HDL module.

To instantiate an ABEL-HDL module:

In the lower-level module: (optional)

1.

Identify lower-level 1/0 Ports (signals) with an INTERFACE statement.

In the top-level source:

2. Declare the lower-level module with an INTERFACE declaration.

3.

Instantiate the lower-level module with FUNCTIONAL_BLOCK declarations.

D NOTE Hierarchy declarations are not required when instantiating an

ABEL-HDL module in a schematic. For instructions on
instantiating lower-level modules in schematics, refer to your
schematic reference.

ABEL Design Manual 38



Hierarchy in ABEL-HDL

Instantiating a Lower-level Module in an ABEL-HDL Source

Identifying 1/0O Ports in the Lower-level Module

The way to identify an ABEL-HDL module’s input and output ports is to place an
INTERFACE statement immediately following the MODULE statement. The
INTERFACE statement defines the ports in the lower-level module that are used by
the top-level source.

You must declare all input pins in the ABEL-HDL module as ports, and you can
specify default values of 0, 1, or Don’t-care.

You do not have to declare all output pins as ports. Any undeclared outputs become
No Connects or redundant nodes. Redundant nodes can later be removed from the
designs during post-link optimization.

The following source fragment is an example of a lower-level INTERFACE statement.

module lower
interface (a=0, [d3..d0]=7 -> [z0..z7]) ;
title 'example of lower-level interface statement ' ...

This statement identifies input a, d3, d2, d1 and dO with default values, and outputs
z0 through z7. For more information, see “Interface (lower-level)” in the ABEL-HDL
Reference Manual .

Specifying Signal Attributes

Attributes specified for pins in a lower-level module are propagated to the higher-level
source. For example, a lower-level pin with an ‘invert’ attribute affects the higher-level
signal wired to that pin (it affects the pin's preset, reset, preload, and power-up value).

Output Enables (OE)

Connecting a lower-level tristate output to a higher-level pin results in the output
enable being specified for the higher-level pin. If another OE is specified for the
higher-level pin, it is flagged as an error. Since most tristate outputs are used as
bidirectionals, it might be important to keep the lower-level OE.

ABEL Design Manual 39



Hierarchy in ABEL-HDL

Buried Nodes
Buried nodes in lower-level sources are handled as follows:

Dangling Nodes Lower-level nodes that do not fanout are propagated to the
higher-level module and become dangling nodes.
Optimization may remove dangling nodes.

Combinational nodes Combinational nodes in a lower-level module become
collapsible nodes in the higher-level module.

Registered nodes Registered nodes are preserved with hierarchical names
assigned to them.

Declaring Lower-level Modules in the Top-level Source

To declare a lower-level module, you match the lower-level module’s INTERFACE
statement with an INTERFACE declaration. For example, to declare the lower-level
module given above, you would add the following declaration to your upper-level
source declarations:

lower interface (a, [d3..d0] -> [z0..z27]) ;

You could specify different default values if you want to override the values given in
the instantiated module, otherwise the instantiated module must exactly match the
lower-level interface statement. See “Interface (top-level)” in the ABEL-HDL
Reference Manual for more information.

Instantiating Lower-level Modules in Top-level Source

Use a FUNCTIONAL_BLOCK declaration in an top-level ABEL-HDL source to
instantiate a declared lower-level module and make the ports of the lower-level
module accessible in the upper-level source. You must declare sources with an
INTERFACE declaration before you instantiate them.

To instantiate the module declared above, add an interface declaration and signal
declarations to your top-level declarations, and add port connection equations to your
top-level equations, as shown in the source fragment below:

DECLARATIONS
lowl FUNCTIONAL_BLOCK lower ;
zed0..zed7 pin ; "upper-level inputs

atop pin istype 'reg,buffer’; "upper-level output
d3..d0 pin istype 'reg,buffer’; "upper-level ouputs
EQUATIONS
atop = lowl.a; "wire this source's outputs
[d3..d0] = low1.[d3..d0] ;  "to lower-level inputs
lowl.[z0..z7] = [zed0..zed7]; "wire this source's inputs
"to lower-level outputs

See “Functional_block” in the ABEL-HDL Reference Manual for more information.

ABEL Design Manual 40



Hierarchy in ABEL-HDL

Hierarchy and Retargeting and Fitting

Redundant Nodes

When you link multiple sources, some unreferenced nodes may be generated. These
nodes usually originate from lower-level outputs that are not being used in the
top-level source. For example, when you use a 4-bit counter as a 3-bit counter. The
most significant bit of the counter is unused and can be removed from the design to
save device resources. This step also removes trivial connections. In the following
example, if outl is a pin andtl is a node:

outl =1t1;

tl = a86;

would be mapped to
outl = a86;

Merging Feedbacks

Linking multiple modules can produce signals with one or more feedback types, such
as .FB and .Q. You can tell the optimizer to combine these feedbacks to help the
fitting process.

Post-linked Optimization

If your design has a constant tied to an input, you can re-optimize the design.
Re-optimizing may further reduce the product terms count.

For example, if you have the equation
out=i0 & il || 10 &i2;

and i0 is tied to 1, the resulting equation would be simplified to

out =il;

ABEL Design Manual 41



Hierarchical Design Considerations

Hierarchical Design Considerations
The following considerations apply to hierarchical design.

Prevent Node Collapsing

Use the signal attribute ‘keep’ to indicate that the combinational node should not be
collapsed (removed). For example, the following ABEL-HDL source uses the 'keep’
signal attribute:

MODULE subl
TITLE 'sub-module 1'
a,b,c pin;

d pin;

e node istype 'keep’;
Equations

e=a$hb;

d=c&e;

END

Node Collapsing

All combinational nodes are collapsible by default. Nodes that are to be collapsed (or
nodes that are to be preserved) are flagged through the use of signal attributes in the
language. The signal attributes are:

Istype 'keep' Do not collapse this node.
‘collapse’ Collapse this node.

Collapsing provides multi-level optimization for combinational logic. Designs with
arithmetic and comparator circuits generally generate a large number of product
terms that will not fit to any programmable logic device. Node collapsing allows you to
describe equations in terms of multi-level combinational nodes, then collapse the
nodes into the output until it reaches the product term you specify. The result is an
equation that is optimized to fit the device constraints.

Selective Collapsing

In some instances you may want to prevent the collapsing of certain nodes. For
example, some nodes may help in the simulation process. You can specify nodes you
do not want collapsed as Istype 'keep' and the optimizer will not collapse them.

ABEL Design Manual 42



Pin-to-pin Language Features

Pin-to-pin Language Features

ABEL-HDL is a device-independent language. You do not have to declare a device or
assign pin numbers to your signals until you are ready to implement the design into a
device. However, when you do not specify a device or pin numbers, you need to
specify pin-to-pin attributes for declared signals.

Because the language is device-independent, the ABEL-HDL compiler does not have
predetermined device attributes to imply signal attributes. If you do not specify signal
attributes or other information (such as the dot extensions, which are described later),
your design might not operate consistently if you later transfer it to a different target
device.

Device-independence vs. Architecture-independence

The requirement for signal attributes does not mean that a complex design must
always be specified with a particular device in mind. You may still have to understand
the differences between GAL devices and ispLSI devices, but you do not have to
specify a particular device when describing your design.

Attributes and dot extensions help you refine your design to work consistently when
moving from one class of device architecture to another; for example from devices
having inverted outputs to those with a particular kind of reset/preset circuitry.
However, the more you refine your design, using these language features, the more
restrictive your design becomes in terms of the number of device architectures for
which it is appropriate.

Signal Attributes

Signal attributes remove ambiguities that occur when no specific device architecture
is declared. If your design does not use device-related attributes (either implied by a
DEVICE statement or expressed in an ISTYPE statement), it may not operate the
same way when targeted to different device architectures. See “Pin Declaration,”
“Node Declaration” and “Istype” in the ABEL-HDL Reference Manual for more
information.

Signal Dot Extensions

Signal dot extensions, like attributes, enable you to more precisely describe the
behavior of a circuit that may be targeted to different architectures. Dot extensions
remove the ambiguities in equations.

Refer to “Feedback Considerations — Dot Extensions” on page 55 and
“Language Structure” in the ABEL-HDL Reference Manual for more information.

ABEL Design Manual 43



Pin-to-pin vs. Detailed Descriptions for Registered Designs

Pin-to-pin vs. Detailed Descriptions for Registered Designs

You can use ABEL-HDL assignment operators when you write high-level equations.
The = operator specifies a combinational assignment, where the design is written
with only the circuit’s inputs and outputs in mind. The := assignment operator
specifies a registered assignment, where you must consider the internal circuit
elements (such as output inverters, presets and resets) related to the memory
elements (typically flip-flops). The semantics of these two assignment operators are
discussed below.

Using := for Pin-to-pin Descriptions

The := implies that a memory element is associated with the output defined by the
equation. For example, the equation;

Q1 :=1Q1 # Preset;

implies that Q1 will hold its current value until the memory element associated with
that signal is clocked (or unlatched, depending on the register type). This equation is
a pin-to-pin description of the output signal Q1. The equation describes the signal's
behavior in terms of desired output pin values for various input conditions. Pin-to-pin
descriptions are useful when describing a circuit that is completely
architecture-independent.

Language elements that are useful for pin-to-pin descriptions are the “:=" assignment
operator, and the .CLK, .OE, .FB, .CLR, .ACLR, .SET, .ASET and .COM dot
extensions described in the ABEL-HDL Reference Manual . These dot extensions
help resolve circuit ambiguities when describing architecture-independent circuits.

Resolving Ambiguities

In the equation above (Q1 :=!Q1 # Preset;), there is an ambiguous feedback
condition. The signal Q1 appears on the right side of the equation, but there is no
indication of whether that fed-back signal should originate at the register, come
directly from the combinational logic that forms the input to the register, or come from
the I/O pin associated with Q1. There is also no indication of what type of register
should be used (although register synthesis algorithms could, theoretically, map this
equation into virtually any register type). The equation could be more completely
specified in the following manner:

Q1.CLK = Clock; "Register clocked from input
Q1 :=!Q1.FB # Preset; "Reg. feedback normalized to pin value

This set of equations describes the circuit completely and specifies enough
information that the circuit will operate identically in virtually any device in which you
can fit it. The feedback path is specified to be from the register itself, and the .CLK
equation specifies that the memory element is clocked, rather than latched.

ABEL Design Manual 44



Pin-to-pin vs. Detailed Descriptions for Registered Designs

Detailed Circuit Descriptions

In contrast to a pin-to-pin description, the same circuit can be specified in a detailed
form of design description in the following manner:

Q1.CLK = Clock; "Register clocked from input
Q1.D = !Q1.Q # Preset; "D-type f/f used for register

In this form of the design, specifying the D input to a D-type flip-flop and specifying
feedback directly from the register restricts the device architectures in which the
design can be implemented. Furthermore, the equations describe only the inputs to,
and feedback from, the flip-flop and do not provide any information regarding the
configuration of the actual output pin. This means the design will operate quite
differently when implemented in a device with inverted outputs versus a device with
non-inverting outputs.

To maintain the correct pin behavior, using detailed equations, one additional
language element is required: a ‘buffer’ attribute (or its complement, an ‘invert’
attribute). The ‘buffer’ attribute ensures that the final implementation in a device has
no inversion between the specified D-type flip-flop and the output pin associated with
Q1. For example, add the following to the declarations section:

Q1 pin istype ‘buffer’;

Detailed Descriptions: Designing for Macrocells

One way to understand the difference between pin-to-pin and detailed description
methods is to think of detailed descriptions as macrocell specifications. A macrocell is
a block of circuitry normally (but not always) associated with a device’s I/O pin.
Figure 4-1 illustrates a typical macrocell associated with signal Q1.

Detailed Macraceal!

Qlap ——— Q1.0e
AP

] o] o o)
Fuse

_[>0_ ML
1

Qi

Ciclk

> Clk
AR

r:H.arg

g jgi
o]

Figure 4-1. Detailed Macrocell

ABEL Design Manual 45



Pin-to-pin vs. Detailed Descriptions for Registered Designs

Detailed descriptions are written for the various input ports of the macrocell (shown in
the figure above with dot extension labels). Note that the macrocell features a
configurable inversion between the Q output of the flip-flop and the output pin labeled
Q1. If you use this inverter (or select a device that features a fixed inversion), the
behavior you observe on the Q1 output pin will be inverted from the logic applied to
(or observed on) the various macrocell ports, including the feedback port Q1.q.

Pin-to-pin descriptions, on the other hand, allow you to describe your circuit in terms
of the expected behavior on an actual output pin, regardless of the architecture of the
underlying macrocell. Figure 4-2 illustrates the pin-to-pin concept:

Fin-to-pin Macrocel!

— .
. |

T\ Dc: Q

Figure 4-2. Pin-to-pin Macrocell

When pin-to-pin descriptions are written in ABEL-HDL, the “generic macrocell” shown
above is synthesized from whatever type of macrocell actually exists in the target
device.

ABEL Design Manual 46



Pin-to-pin vs. Detailed Descriptions for Registered Designs

Examples of Pin-to-pin and Detailed Descriptions

Two equivalent module descriptions, one pin-to-pin and one detailed, are shown
below for comparison:

Pin-to-pin Module Description

module Q1 1
Q1 pin  istype 'reg’;
Clock,Preset  pin;
equations
Ql.clk = Clock;
Q1 :=1Q1.fb # Preset;
test_vectors ([Clock,Preset] -> Q1)
[.c, 1]->1;
[.c., 0]->0;
[.c., O0]->1;
[.c., 0]->0;
[.c., 1]->1;
[.c., 1]->1;

end

Detailed Module Description
module Q1_2
Q1 pin istype 'reg_D,buffer’;
Clock,Preset  pin;

equations
Q1.CLK = Clock;
Q1D =1Q1.Q # Preset;

test_vectors ([Clock,Preset] -> Q1)

[.c, 1]->1;
[.c., 0]->0;
[.c., 0]->1,;
[.c., 0]->0;
[.c., 1]->1,
[.c., 1]->1;

end

The first description can be targeted into virtually any device (if register synthesis and
device fitting features are available), while the second description can be targeted
only to devices featuring D-type flip-flops and non-inverting outputs.

To implement the second (detailed) module in a device with inverting outputs, the
source file would need to be modified as shown in the following section.

ABEL Design Manual 47



Pin-to-pin vs. Detailed Descriptions for Registered Designs

Detailed Module with Inverted Outputs

module Q1_3
Q1 pin istype 'reg_D,invert’;
Clock,Preset  pin;

equations
Q1.CLK = Clock;
1Q1.D = Q1.Q # Preset;

test_vectors ([Clock,Preset] -> Q1)
[.c, 1]->1;
[.c., 0]->0;
[.c., 0]->1,;
[.c., 0]->0;
[.c., 1]->1;
[.c, 1]->1;

end

In this version of the module, the existence of an inverter between the output of the
D-type flip-flop and the output pin (specified with the ‘'invert' attribute) has
necessitated a change in the equation for Q1.D.

As this example shows, device-independence and pin-to-pin description methods are
preferable, since you can describe a circuit completely for any implementation. Using
pin-to-pin descriptions and generalized dot extensions (such as .FB, .CLK and .OE)
as much as possible allows you to implement your ABEL-HDL module into any one of
a particular class of devices. (For example, any device that features enough flip-flops
and appropriately configured 1/0O resources.) However, the need for particular types of
device features (such as register preset or reset) might limit your ability to describe
your design in a completely architecture-independent way.

If, for example, a built-in register preset feature is used in a simple design, the target
architectures are limited. Consider this version of the design:

ABEL Design Manual 48



Pin-to-pin vs. Detailed Descriptions for Registered Designs

module Q1_5I
Q1 pin istype 'reg,buffer’;
Clock,Preset  pin;

equations
Q1.CLK = Clock;
Q1.AP = Preset;

Q1 =1Q1fb;
test_vectors ([Clock,Preset] -> Q1)
[.c, 1]->1;
[.c., 0]->0;
[.c., O0]->1;
[.c., 0]->0;
[.c., 1]->1;
[.c., 1]->1;

end

The equation for Q1 still uses the := assignment operator and .FB for a pin-to-pin
description of Q1's behavior, but the use of .AP to describe the reset function

requires consideration of different device architectures. The .AP extension, like the
.D and .Q extensions, is associated with a flip-flop input, not with a device output pin.

If the target device has inverted outputs, the design will not reset properly, so this
ambiguous reset behavior is removed by using the ‘buffer’ attribute, which reduces
the range of target devices to those with non-inverted outputs.

Using .ASET instead of .AP can solve this problem if the fitter being used supports

the .ASET dot extension.

Versions 5 and 7 of the design above and below are unambiguous, but each is

restricted to certain device classes:

module Q1_7I
Q1 pin  istype 'reg,invert’
Clock,Preset  pin;

equations
Q1.CLK = Clock;
Q1lL.AR = Preset;

Q1 =1Q1fb;
test_vectors ([Clock,Preset] -> Q1)
[.c., 1]->1;
[.c., 0]->0;
[.c., O0]->1;
[.c., 0]->0;
[.c., 1]->1;
[.c., 1]->1,;

end

ABEL Design Manual

49



Pin-to-pin vs. Detailed Descriptions for Registered Designs

When to Use Detailed Descriptions

Although the pin-to-pin description is preferable, there will frequently be situations
when you must use a more detailed description. If you are unsure about which
method to use for various parts of your design, examine the design’s requirements. If
your design requires specific features of a device (such as register preset or unusual
flip-flop configurations), detailed descriptions are probably necessary. If your design
is a simple combinational function, or if it matches the “generic” macrocell in its
requirements, you can probably use simple pin-to-pin descriptions.

Using := for Alternative Flip-flop Types

In ABEL-HDL you can specify a variety of flip-flop types using attributes such as
istype ‘reg_D’ and ‘reg_JK'. However, these attributes do not enforce the use of a
specific type of flip-flop when a device is selected, and they do not affect the meaning
of the := assignment operator.

You can think of the := assignment operator as a memory operator. The type of
register that most closely matches the := assignment operator’s behavior is the
D-type flip-flop.

The primary use for attributes such as istype ‘reg_D’ , ‘reg_JK’ and

‘reg_SR’ s to control the generation of logic. Specifying one of the ‘reg_’
attributes (for example, istype ‘reg_D’ ) instructs the AHDL compiler to generate
equations using the .D extension regardless of whether the design was written using
.D, := or some other method (for example, state diagrams).

D NOTE You also need to specify istype ‘invert’ or ‘buffer’ when you use
detailed syntax.

Using := for flip-flop types other than D-type is only possible if register synthesis
features are available to convert the generated equations into equations appropriate
for the alternative flip-flop type specified. Since the use of register synthesis to
convert D-type flip-flop stimulus into JK or SR-type stimulus usually results in
inefficient circuitry, the use of := for these flip-flop types is discouraged. Instead, you
should use the .J and .K extensions (for JK-type flip-flops) or the .S and .R extensions
(for SR-type flip-flops) and use a detailed description method (including ‘invert' or
‘buffer' attributes) to describe designs for these register types.

There is no provision in the language for directly writing pin-to-pin equations for

registers other than D-type. State diagrams, however, may be used to describe
pin-to-pin behavior for any register type.

ABEL Design Manual 50



Using Active-low Declarations

Using Active-low Declarations
In ABEL-HDL you can write pin-to-pin design descriptions using implied active-low
signals. Active-low signals are declared with a ‘!’ operator, as shown below:
Q1 pin istype 'reg’;

If a signal is declared active-low, it is automatically complemented when you use it in
the subsequent design description. This complementing is performed for any use of
the signal itself, including as an input, as an output, and in test vectors.
Complementing is also performed if you use the .fb dot extension on an active-low
signal.

The following three designs, for example, operate identically:

Design 1 — Implied Pin-to-Pin Active-low

module act_low?2
190,!gl pin istype 'reg’;

clock pin;
reset pin;
equations

[91,90].clk = clock;
[91,90] := ([91,90].FB + 1) & 'reset;

test_vectors ([clock,reset] -> [ g1, q0])
[c.,1]->[0,0];

[.c.,
[C,O]->[1,0];
[.c., 0
[.c., 0
[.c.,0
[.c., 1

end

ABEL Design Manual 51



Using Active-low Declarations

Design 2 — Explicit Pin-to-Pin Active-low

module act_lowl

g0,q1 pin istype 'reg’

clock pin;
reset pin;

equations
[91,90].clk = clock;

la1,q0] := ("[a1,q0].

FB + 1) & Ireset;

test_vectors ([clock,reset] -> [1q1,!q0])

[c.,1]->[0,0];
[c,0]->[0,1];
[c.,0]->[1,0];
[c.,0]->[1,1]
[c.,0]->[0,0]
[.c.,0]->[0,1]
[c., 1]->[0,0]

end

Design 3 — Explicit Detailed Active-low

module act_low3

90,91 pinistype 'reg_d,buffer’

clock pin;
reset pin;

equations
[91,90].clk = clock;

191,90].D := (1[g1,90].Q + 1) & !reset;

test_vectors ([clock,reset] -> [!q1,!q0])

[.c.,

’

11->[0,0];
0]->[0,17;
0]->[1,0];

_>[1
_>[0
_>[0
->[0

———

PooooDb

, 0]
» 0]
0]
1]

end

1
, 0]
1]
01,

Both of these designs describe an up counter with active-low outputs. The first
example inverts the signals explicitly (in the equations and in the test vector header),
while the second example uses an active-low declaration to accomplish the same

thing.

ABEL Design Manual

52



Polarity Control

Polarity Control

Automatic polarity control is a powerful feature in ABEL-HDL where a logic function is
converted for both non-inverting and inverting devices.

A single logic function may be expressed with many different equations. For example,
all three equations below for F1 are equivalent.

(1) F1 = (A & B);
(2) IF1 = (A & B);
(3) IF1 = 1A # IB;

In the example above, equation (3) uses two product terms, while equation (1)
requires only one. This logic function will use fewer product terms in a non-inverting
device than in an inverting device. The logic function performed from input pins to
output pins will be the same for both polarities.

Not all logic functions are best optimized to positive polarity. For example, the
inverted form of F2, equation (3), uses fewer product terms than equation (2).

(1) F2 = (A # B) & (C # D);
(2)F2=(A&C)#(A&D)# (B &C) # (B &D);
(3) IF2 = ('A & 'B) # (IC & !D);

Programmable polarity devices are popular because they can provide a mix of non-
inverting and inverting outputs to achieve the best fit.

Polarity Control with Istype

In ABEL-HDL, you control the polarity of the design equations and target device (in
the case of programmable polarity devices) in two ways:

= Using Istype 'neg’, 'pos' and 'dc’
= Using Istype 'invert' and 'buffer’

Using Istype ‘neg’, ‘pos’, and ‘dc’ to Control Equation and Device Polarity

The ‘neg’, ‘pos’, and ‘dc’ attributes specify types of optimization for the polarity as
follows:

ABEL Design Manual 53



Flip-flop Equations

‘neg’ Istype ‘neg’ optimizes the circuit for negative polarity.
Unspecified logic in truth tables and state diagrams becomes
ao.

Istype ‘pos’ optimizes the circuit for positive polarity.
Unspecified logic in truth tables and state diagrams becomes
al.

‘dc’ Istype ‘dc’ uses polarity for best optimization. Unspecified
logic in truth tables and state diagrams becomes don't care

(X).

Using ‘invert’ and ‘buffer’ to Control Programmable Inversion

An optional method for specifying the desired state of a programmable polarity output
is to use the ‘invert’ or ‘buffer’ attributes. These attributes ensure that an inverter gate
either does or does not exist between the output of a flip-flop and its corresponding
output pin. When you use the ‘invert’ and ‘buffer’ attributes, you can still use
automatic polarity selection if the target architecture features programmable inverters
located before the associated flip-flop.

|:| NOTE The ‘invert’ and ‘buffer’ attributes do not actually control device
or equation polarity — they only enforce the existence or
nonexistence of an inverter between a flip-flop and its output

pin.

The polarity of devices that feature a fixed inverter in this location, and a
programmable inverter before the register, cannot be specified using ‘invert’ and
‘buffer’.

Flip-flop Equations

Pin-to-pin equations (using the := assignment operator) are only supported for D
flip-flops. ABEL-HDL does not support the := assignment operator for T, SR or JK
flip-flops and has no provision for specifying a particular output pin value for these

types.

If you write an equation of the form:
Q1 :=1,;

and the output, Q1, has been declared as a T-type flip-flop, the ABEL-HDL compiler
will give a warning and convert the equation to

QLT =1,

ABEL Design Manual 54



Feedback Considerations — Dot Extensions

Since the T input to a T-type flip-flop does not directly correspond to the value you
observed on the associated output pin, this equation will not result in the pin-to-pin
behavior you want.

To produce specific pin-to-pin behavior for alternate flip-flop types, you must consider
the behavior of the flip-flop you used and write detailed equations that stimulate the
inputs of that flip-flop. A detailed equation to set and hold a T-type flip-flop is shown
below:

QL.T = !Q1.Q;

Feedback Considerations — Dot Extensions

The source of feedback is normally set by the architecture of the target device. If you
don't specify a particular feedback path, the design may operate differently in different
device types. Specifying feedback paths (with the .FB, .Q or .PIN dot extensions)
eliminates architectural ambiguities. Specifying feedback paths also allows you to use
architecture-independent simulation.

The following rules should be kept in mind when you are using feedback:

= No Dot Extension — A feedback signal with no dot extension (for example,
count := count+1;) results in pin feedback if it exists in the target device. If there is
no pin feedback, register feedback is used, with the value of the register contents
complemented (normalized) if needed to match the value observed on the pin.

= .FB Extension — A signal specified with the .FB extension (for example,
count := count.fb+1;) results in register feedback normalized to the pin value if a
register feedback path exists. If no register feedback is available, pin feedback is
used, and the fuse mapper checks that the output enable does not conflict with
the pin feedback path. If there is a conflict, an error is generated if the output
enable is not constantly enabled.

= .COM Extension — A signal specified with the .COM extension (for example,
count := count.com+1;) results in OR-array (pre-register) feedback, normalized to
the pin value if an OR-array feedback path exists. If no OR-array feedback is
available, pin feedback is used and the fuse mapper checks that the output enable
does not conflict with the pin feedback path. If there is a conflict, an error is
generated if the output enable is not constantly enabled.

= .PIN Extension — If a signal is specified with the .PIN extension (for example,
count := count.pin+1;), the pin feedback path will be used. If the specified device
does not feature pin feedback, an error will be generated. Output enables
frequently affect the operation of fed-back signals that originate at a pin.

s .Q Extension — Signals specified with the .Q extension (for example,
count.d = count.g+1;) will originate at the Q output of the associated flip-flop. The
fed-back value may or may not correspond to the value you observe on the
associated output pin; if an inverter is located between the Q output of the flip-flop
and the output pin (as is the case in most registered PAL-type devices), the value
of the fed-back signal will be the complement of the value you observe on the pin.

ABEL Design Manual 55



Feedback Considerations — Dot Extensions

= .D Extension — Some devices allow feedback of the input to the register. To
select this feedback, use the .D extension. Some device kits also support .COM
for this feedback; refer to your device kit manual for detailed information.

Dot Extensions and Architecture-Independence

To be architecture-independent, you must write your design in terms of its pin-to-pin
behavior rather than in terms of specific device features (such as flip-flop
configurations or output inversions).

For example, consider the simple circuit shown in the following (Figure 4-3). This
circuit toggles high when the Toggle input is forced high, and low when the Toggle is
low. The circuit also contains a three-state output enable that is controlled by the
active-low Enable input.

Dot Extensions and Architecture-independence. Cirowt 1

Ena

B o]
Tnggle—}ﬁ' Q = Qout

Clk —— =

Figure 4-3. Dot Extensions and Architecture-independence: Circuit 1

The following simple ABEL-HDL design describes this simple one-bit synchronous
circuit. The design description uses architecture-independent dot extensions to
describe the circuit in terms of its behavior, as observed on the output pin of the
target device. Since this design is architecture-independent, it will operate the same
(disregarding initial powerup state), irrespective of the device type.

ABEL Design Manual 56



Feedback Considerations — Dot Extensions

module pin2pin;

Clk  pin1;

Toggle pin 2;

Ena pin 11;

Qout pin 19 istype 'reg’;
eguations

Qout :=!Qout.FB & Toggle;

Qout.CLK = CIk;

Qout.OE =IEna;

test_vectors([Clk,Ena,Toggle] -> [Qout])
c,0,0 ]-> 0
. ->
->
->
->
->
>
]1->
->

OrRPORFrRPOOOO

SRR
RRPRRRPRPRPREPER
oNpNOoOror

end

Figure 4-4. Pin-to-pin One-bit Synchronous Circuit module pin2pin

If you implement this circuit in a simple GAL16LV8 device (either by adding a device
declaration statement or by specifying the P16R8 in the Fuseasm process), the result
will be a circuit like the one illustrated in the following figure (Figure 4-5). Since the
GAL16LV8 features inverted outputs, the design equation is automatically modified to
take the feedback from Q-bar instead of Q.

Dot Extensions and Architecture-independence:. Cirowt 2

[1]

I
__)I(\J(

A

' OFEE-

Figure 4-5. Dot Extensions and Architecture-independence: Circuit 2

ABEL Design Manual 57



Feedback Considerations — Dot Extensions

Dot Extensions and Detail Design Descriptions

You may need to be more specific about how you implement a circuit in a target
device. More-complex device architectures have many configurable features, and you
may want to use these features in a particular way. You may want a precise powerup
and preset operation or, in some cases, you may need to control internal elements.

The circuit previously described (using architecture-independent dot extensions)
could be described, for example, using detailed dot extensions in the following
ABEL-HDL source file.

module detaill
di device 'P16R8';

Clk  pin 1,

Toggle pin 2;

Ena pin 11;

Qout  pin 19 istype 'reg_D";
equations

IQout.D = Qout.Q & Toggle;

Qout.CLK = CIk;

Qout.OE =IEna;

test_vectors([Clk,Ena,Toggle] -> [Qout])
[.c., 0, -> 0

.c., 0, ->
>

->
->
->
->
]1->
>

oNrNOoRroro

RRRRPRPRRRRO

000000
el Jol Jololo]

end

Figure 4-6. Detailed One-bit Synchronous Circuit with Inverted Qout

This version of the design will result in exactly the same fuse pattern as indicated in
Figure 4-5. As written, this design assumes the existence of an inverted output for the
signal Qout. This is why the Qout.D and Qout.Q signals are reversed from the
architecture-independent version of the design presented earlier.

D NOTE The inversion operator applied to Qout.D does not correspond
directly to the inversion found on each output of a P16R8. The
equation for Qout.D actually refers to the D input of one of the
GAL16LV8’s flip-flops; the output inversion found in a P16R8 is
located after the register and is assumed rather than specified.

To implement this design in a device that does not feature inverted outputs, the
design description must be modified. The following example shows how to write this
detailed design:

ABEL Design Manual 58



Feedback Considerations — Dot Extensions

module detail2
pin 1;

Clk

Toggle pin 2;
pin 11;

Ena
Qout

equations

Qout.D

test_vectors([Clk,Ena

.c.,

Soohnn oo

end

pin 19 istype 'reg_D';

0

OrRPORFrRPOOOO

=1Qout.Q & Toggle;
Qout.CLK = CIk;
Qout.OE

RRRRPRPRRRO

= IEna;

,Toggle] -> [Qout])

->
->
->
->
->
->
>
->
>

oNrNoRroro

Figure 4-7. Detail One-bit Synchronous Circuit with non-inverted Qout

ABEL Design Manual

59



Using Don’t Care Optimization

Using Don’t Care Optimization

Use Don’t Care optimization to reduce the amount of logic required for an
incompletely specified function. The @DCSET directive (used for logic description
sections) and ISTYPE attribute ‘dc’ (used for signals) specify don’t care values for

unspecified logic.

Consider the following ABEL-HDL truth table:

truth_table  ([i3,i2,i1,i0]->[f3,12,f1,f0])
[0,0,0, O]->[ 0,0,0, 1]

1]

This truth table has four inputs, and therefore sixteen (24) possible input
combinations. The function specified, however, only indicates eight significant input
combinations. For each of the design outputs (f3 through f0) the truth table specifies
whether the resulting value should be 1 or 0. For each output, then, each of the eight
individual truth table entries can be either a member of a set of true functions called

the on-set, or a set of false functions called the off-set.

Using output 3, for example, the eight input conditions can be listed as on-sets and
off-sets as follows (maintaining the ordering of inputs as specified in the truth table

above):
on-set of f3  off-set of f3
0111 0000
1111 0001
1110 0011
1100 1000

The remaining eight input conditions that do not appear in either the on-set or off-set

are said to be members of the dc-set, as follows for f3:
dc-set of f3

0010
0100
0101
0110
1001
1010
1011
1101

ABEL Design Manual

60



Using Don’t Care Optimization

Expressed as a Karnaugh map, the on-set, off-set and dc-set would appear as
follows (with ones indicating the on-set, zeroes indicating the off-set, and dashes
indicating the dc-set):

If the don’t-care entries in the Karnaugh map are used for optimization, the function
for f3 can be reduced to a single product term (f3 = i2) instead of the two (f3 =i3 & i2
& 0 #12 & i1 & i0) otherwise required.

The ABEL-HDL compiler uses this level of optimization if the @DCSET directive or
ISTYPE ‘dc’ is included in the ABEL-HDL source file, as shown below.

module dc
i3,i2,i1,i0 pin;
f3,f2,f1,f0 pin istype 'dc,com’;

truth_table ([ i3,i2, |1 |O]

—n

>[f3,f2,f1,f0])

OHHHEOOO
CORRRERROO

oooyHHHo

o
->
->
->
->
->
->

PrRrRrRrooo0O®
ORRRPRROOO—F
OOR PR RROO:

1];
1
1
1
0];
, O;
0
0

OOOI—‘I—\I—‘I—‘O

end

Figure 4-8. Source File Showing Don’'t Care Optimization

This example results in a total of four single-literal product terms, one for each output.
The same example (with no istype ‘dc’) results in a total of twelve product terms.

For truth tables, Don’t Care optimization is almost always the best method. For state
machines, however, you may not want undefined transition conditions to result in
unknown states, or you may want to use a default state (determined by the type of
flip-flops used for the state register) for state diagram simplification.

When using don’t care optimization, be careful not to specify overlapping conditions
(specifying both the on-set and dc-set for the same conditions) in your truth tables
and state diagrams. Overlapping conditions result in an error message.

For state diagrams, you can perform additional optimization for design outputs if you
specify the @dcstate attribute. If you enter @dcstate in the source file, all state
diagram transition conditions are collected during state diagram processing. These
transitions are then complemented and applied to the design outputs as don’t-cares.
You must use @dcstate in combination with @dcset or the ‘dc’ attribute.

ABEL Design Manual 61



Exclusive OR Equations

Exclusive OR Equations

Designs written for exclusive-OR (XOR) devices should contain the 'xor' attribute for
architecture-independence.

Optimizing XOR Devices
You can use XOR gates directly by writing equations that include XOR operators, or

you can use implied XOR gates. XOR gates can minimize the total number of product
terms required for an output or they can emulate alternate flip-flop types.

Using XOR Operators in Equations

If you want to write design equations that include XOR operators, you must either
specify a device that features XOR gates in your ABEL-HDL source file, or specify the
'xor' attribute for all output signals that will be implemented with XOR gates. This
preserves one top-level XOR operator for each design output. For example,

module X1
Q1 pin istype ‘com,xor’;
a,b,c pin;

equations
Ql=a$bé&c;

end

Also, when writing equations for XOR PALSs, you should use parentheses to group
those parts of the equation that go on either side of the XOR. This is because the
XOR operator ($) and the OR operator (#) have the same priority in ABEL-HDL. See
example octalf.abl .

Using Implied XORs in Equations

High-level operators in equations often result in the generation of XOR operators. If
you specify the 'XOR' attribute, these implied XORs are preserved, decreasing the
number of product terms required. For example,

module X2
03,02,01,g0 pin istype 'reg,xor’;
clock pin;
count = [g3..q0];
equations
count.clk = clock;
count := count.FB + 1;
end

This design describes a simple four-bit counter. Since the addition operator results in
XOR operators for the four outputs, the 'xor' attribute can reduce the amount of
circuitry generated.

ABEL Design Manual 62



Exclusive OR Equations

D NOTE The high-level operator that generates the XOR operators
must be the top-level (lowest priority) operation in the
equation. An equation such as
count := (count.FB + 1) & !reset; does not result in the
preservation of top-level XOR operators, since the & operator
is the top-level operator.

Using XORs for Flip-flop Emulation

Another way to use XOR gates is for flip-flop emulation. If you are using an XOR
device that has outputs featuring an XOR gate and D-type flip-flops, you can write
your design as if you were going to be implementing it in a device with T-type
flip-flops. The XOR gates and D-type flip-flops emulate the specified T-type flip-flops.
When using XORs in this way, you should not use the ‘xor’ attribute for output signals
unless the target device has XOR gates.

JK Flip-Flop Emulation

You can emulate JK flip-flops using a variety of circuitry found in programmable
devices. When a T-type flip-flop is available, you can emulate JK flip-flops by ANDing

the Q output of the flip-flop with the K input. The !Q output is then ANDed with the J
input.

Figure 4-9 illustrates the circuitry and the Boolean expression.

JK Flip-flop Emulation Using T FHin-flop

| AND2 Preset
Y 3 Di Clear T FF
OR2 _°; R
1 L= aC
| | AND2 2 3 CHIES
5 3 4 b Cih B
Clack

Cho= (&) # (K & Q) 0F77-4

Figure 4-9. JK Flip-flop Emulation Using T Flip-flop

ABEL Design Manual 63



Exclusive OR Equations

You can emulate a JK flip-flop with a D flip-flop and an XOR gate. This technique is

useful in devices such as the GAL20VP8. The circuitry and Boolean expression is
shown in Figure 4-10.

T Hip-flop Emulation Using D Fip-flon

Preset

Clear
O FF

=0OR 12 s “ : .
1 —T
3 3
T ¢ 3 ] i

e Op—2

Clock,

Q:=T4%0Q

Figure 4-10. T Flip-flop Emulation Using D Flip-flop

Finally, you can also emulate a JK flip-flop by combining the D flip-flop emulation of a

T flip-flop, Figure 4-10, with the circuitry of Figure 4-1. The following figure illustrates
this concept.

JK Flip-flop Emulation, 0 Hin-flop with X0OR

b Clear
Tl e

1
&
1 O i KOH =

AHDE
1

L
Fu |02
Y o oloml|o
o
(i) ]

Q=3 UE K E W | emed Ginuit in Digitsl Eketonios
Amr=d BEama and Can Post

John Whiley & Sors. 1573 —

Figure 4-11. JK Flip-flop Emulation, D Flip-flop with XOR

ABEL Design Manual 64



State Machines

State Machines

A state machine is a digital device that traverses a predetermined sequence of states.
State-machines are typically used for sequential control logic. In each state, the
circuit stores its past history and uses that history to determine what to do next.

This section provides some guidelines to help you make state diagrams easy to read
and maintain and to help you avoid problems. State machines often have many
different states and complex state transitions that contribute to the most common
problem, which is too many product terms being created for the chosen device. The
topics discussed in the following subsections help you avoid this problem by reducing
the number of required product terms.

The following subsections provide state machine considerations:

= Use Identifiers Rather Than Numbers for States

» Powerup Register States

= Unsatisfied Transition Conditions, D-Type Flip-Flops
» Unsatisfied Transition Conditions, Other Flip-Flops
= Number Adjacent States for a One-bit Change

m Use State Register Outputs to Identify States

= Use Symbolic State Descriptions

Use ldentifiers Rather Than Numbers for States

A state machine has different “states” that describe the outputs and transitions of the
machine at any given point. Typically, each state is given a name, and the state
machine is described in terms of transitions from one state to another. In a real
device, such a state machine is implemented with registers that contain enough bits
to assign a unique number to each state. The states are actually bit values in the
register, and these bit values are used along with other signals to determine state
transitions.

As you develop a state diagram, you need to label the various states and state
transitions. If you label the states with identifiers that have been assigned constant
values, rather than labeling the states directly with numbers, you can easily change
the state transitions or register values associated with each state.

When you write a state diagram, you should first describe the state machine with
names for the states, and then assign state register bit values to the state names.

For an example, see Figure 4-12 for a state machine named “sequence.” (This state
machine is also discussed in the design examples.) Identifiers (A, B, and C) specify
the states. These identifiers are assigned a constant decimal value in the declaration
section that identifies the bit values in the state register for each state. A, B, and C are
only identifiers: they do not indicate the bit pattern of the state machine. Their
declared values define the value of the state register (sreg) for each state. The
declared values are 0, 1, and 2.

ABEL Design Manual 65



State Machines

module Sequence
title 'State machine example’;

gl,q0 pin 14,15 istype 'reg’;
clock,enab,start,hold,reset pin 1,11,4,2,3;
halt pin 17 istype 'reg’;
in_B,in_C pin 12,13 istype 'com’;
sreg = [a1,90];

"State Values...
A=0; B=1; C=2;

equations

[91,90,halt].clk = clock;
[91,90,halt].oe =!lenab;
state_diagram sreg;

State A: " Hold in state A until start is active.
in B=0;
in C=0;

IF (start & 'reset) THEN B WITH halt := 0;

ELSE A WITH halt := halt.fb;

State B: " Advance to state C unless reset is active
in B=1,; " or hold is active. Turn on halt indicator
in C=0; " if reset.

IF (reset) THEN A WITH halt :=1;
ELSE IF (hold) THEN B WITH halt := 0;
ELSE C WITH halt := 0;

State C: " Go back to A unless hold is active
in B=0; " Reset overrides hold.
in C=1,;

IF (hold & !reset) THEN C WITH halt := 0;
ELSE A WITH halt := 0;

test_vectors([clock,enab,start,reset,hold]->[sreg,halt,in_B,in_C])
[p.,0,0,0,0]>A,0,0,0]

[c.,0,0,0,0]>[A,0,0,0]
[c.,0,12,0,0]>[B,0,1,0]
[c.,0,0,0,0]>[C,0,0,1F;
[c.,0,1,0,0]>[A,0,0,0]
[c.,0,12,0,0]>[B,0,1,0]
[c.,0,0,1,0]>[A,12,0,0]
[c.,0,0,0,0]>[A,212,0,0]
[c.,0,12,0,0]>[B,0,1,0]
[c.,0,0,0,1]>[B,0,1,0]
[c.,0,0,0,1]>[B,0,1,0]
[c.,0,0,0,0]>[C,0,0,1F

end

Figure 4-12. Using Identifiers for States

ABEL Design Manual 66



State Machines

Powerup Register States

If a state machine has to have a specific starting state, you must define the register
powerup state in the state diagram description or make sure your design goes to a
known state at powerup. Otherwise, the next state is undefined.

Unsatisfied Transition Conditions

D-Type Flip-Flops

For each state described in a state diagram, you specify the transitions to the next
state and the conditions that determine those transitions. For devices with D-type
flip-flops, if none of the stated conditions are met, the state register, shown in the
following figure, is cleared to all Os on the next clock pulse. This action causes the
state machine to go to the state that corresponds to the cleared state register. This
can either cause problems or you can use it to your advantage, depending on your
design.

D-tyne Reqister with False fnpuls

MO PRODUCT TERM
MO PRODUCT TERM 1
MO PRODUCT TERM

MO PRODUCT TERM

MO PRODUCT TERM LOGIC O ] Cl FO
MO PRODUCT TERM
MO PRODUCT TERM
MO PRODUCT TERM

<

OFFgd

Figure 4-13. D-type Register with False Inputs

You can use the clearing behavior of D-type flip-flops to eliminate some conditions in
your state diagram, and some product terms in the converted design, by leaving the
cleared-register state transition implicit. If no specified transition condition is met, the
machine goes to the cleared-register state. This behavior can also cause problems if
the cleared-register state is undefined in the state diagram, because if the transition
conditions are not met for any state, the machine goes to an undefined state and
stays there.

To avoid problems caused by this clearing behavior, always have a state assigned to
the cleared-register state. Or, if you do not assign a state to the cleared-register state,
define every possible condition so some condition is always met for each state. You
can also use the automatic transition to the cleared-register state by eliminating
product terms and explicit definitions of transitions. You can also use the
cleared-register state to satisfy illegal conditions.

ABEL Design Manual 67



State Machines

Other Flip-flops

If none of the state conditions is met in a state machine that employs JK, RS, and
T-type flip-flops, the state machine does not advance to the next state, but holds its
present state due to the low input to the register from the OR array output. In such a
case, the state machine can get stuck in a state. You can use this holding behavior to
your advantage in some designs.

Precautions for Using Don’t Care Optimization

When you use don't care optimization, you need to avoid certain design practices.
The most common design technique that conflicts with this optimization is mixing
equations and state diagrams to describe default transitions. For example, consider
the design shown in the following figure.

module TRAFFIC
title "Traffic Signal Controller'

Clk,SenA,SenB pin 1,8, 7;

PR pin 16; "Preset control
GA, YA RA pin 15..13;

GB,YB,RB pin 11..9;

"Node numbers are not required if fitter is used
S3..S0 node 31..34 istype 'reg_sr,buffer’;
COMP node 43;

H,L,Ck,X =10, .C, .X;
Count =[S3..S0];

"Define Set and Reset inputs to traffic light flip-flops
GreenA =[GA.S,GA.R];
YellowA = [YA.S,YA.R];
RedA =[RA.S,RAR];
GreenB =[GB.S,GB.R];
YellowB =[YB.S,YB.R];
RedB =[RB.S,RB.R];
On =[1,0]
off =[0, 1],

" test_vectors edited

equations
[GB,YB,RB].AP = PR;
[GA,YA,RA].AP = PR;
[GB,YB,RB].CLK = CIk;
[GA,YA,RA].CLK = Clk;
[S3..S0].AP = PR;
[S3..S0].CLK = Clk;

Figure 4-14. State Machine Description with Conflicting Logic

ABEL Design Manual 68



State Machines

"Use Complement Array to initialize or restart
[S3..S0].R = (ICOMP & [1,1,1,1));
[GreenA,YellowA,RedA] = (ICOMP & [On ,Off,0ff]);
[GreenB,YellowB,RedB] = (ICOMP & [Off,Off,0On ]);

state_diagram Count
State 0: if (SenA & !SenB ) then 0 with COMP = 1;
if (ISenA & SenB ) then 4 with COMP = 1,
if ( SenA == SenB ) then 1 with COMP = 1;

State 1: goto 2 with COMP =1,
State 2: goto 3 with COMP =1,
State 3: goto 4 with COMP =1,
State 4: GreenA = Off;
YellowA =0On;
goto 5 with COMP =1,

State 5: YellowA = Off;

RedA =0On;
RedB = Off;
GreenB =0On;
goto 8 with COMP =1,
State 8: if 1SenA & SenB ) then 8 with COMP = 1,
if ( SenA & !SenB ) then 12 with COMP = 1,
if ( SenA == SenB ) then 9 with COMP = 1,

State 9: goto 10 with COMP =1,
State 10: goto 11 with COMP =1,
State 11:  goto 12 with COMP =1,
State 12: GreenB = Off;
YellowB = On ;
goto 13 with COMP =1,
State 13: YellowB = Off;

RedB =0n;
RedA = Off;
GreenA =0n;

goto O with COMP =1,
end

Figure 4-14 State Machine Description with Conflicting Logic (Continued)

ABEL Design Manual 69



State Machines

This design uses the complement array feature of the Signetics FPLA devices to
perform an unconditional jump to state [0,0,0,0]. If you use the @DCSET directive,
the equation that specifies this transition

[S3,52,51,S0].R = ({COMP & [1,1,1,1]);

will conflict with the dc-set generated by the state diagram for S3.R, S2.R, S1.R, and
SO.R. If equations are defined for state bits, the @DCSET directive is incompatible.
This conflict would result in an error and failure when the logic for this design is
optimized.

To correct the problem, you must remove the @DCSET directive so the implied dc-set
equations are folded into the off-set for the resulting logic function. Another option is
to rewrite the module as shown below.

module TRAFFIC1
title 'Traffic Signal Controller'

Clk,SenA,SenB pin 1,8, 7;

PR pin 16; "Preset control
GA,YA,RA pin 15..13;

GB,YB,RB pin 11..9;

S3..S0 node 31..34 istype 'reg_sr,buffer’;
H,L,Ck,X =1,0,.C, .X;
Count =[S3..S0];

"Define Set and Reset inputs to traffic light flip flops

GreenA =[GA.S,GAR];
YellowA = [YA.S,YA.R];
RedA =[RA.S,RA.R];
GreenB =[GB.S,GB.R];
YellowB = [YB.S,YB.R];
RedB =[RB.S,RB.R];
On =[1,0]

off =[0, 1];
" test_vectors edited
equations

[GB,YB,RB].AP = PR;
[GA,YA,RA].AP = PR;
[GB,YB,RB].CLK = CIK;
[GA,YA,RA].CLK = CIK;
[S3..S0].AP = PR;
[S3..S0].CLK = Clk;

Figure 4-15. @DCSET-compatible State Machine Description

ABEL Design Manual 70



State Machines

@DCSET
state_diagram Count
State O: if (SenA & !SenB ) then O;
if (!SenA & SenB) then 4;
if (SenA == SenB ) then 1,
State 1: goto 2;
State 2: goto 3;
State 3: goto 4;

State 4: GreenA = Off;
YellowA = On;
goto 5;
State 5: YellowA = Off;
RedA =0n;
RedB = Off;
GreenB =0n;
goto 8§;
State 6: goto O;
State 7: goto O;

State 8: if !SenA & SenB ) then 8§;
if (SenA & !SenB ) then 12;
if (SenA == SenB ) then 9;
State 9: goto 10;
State 10: goto 11;
State 11: goto 12;
State 12: GreenB = Off;

YellowB =On ;
goto 13;
State 13: YellowB = Off;
RedB =0n;
RedA = Off;
GreenA =0n;
goto O;
State 14:  goto O;
State 15: "Power up and preset state
RedA = Off;
YellowA = Off;
GreenA =0n;
RedB =0On;
YellowB = Off;
GreenB = Off;
goto O;

end

Figure 4-15 @DCSET-compatible State Machine Description (Continued)

ABEL Design Manual 71



State Machines

Number Adjacent States for One-bit Change

You can reduce the number of product terms produced by a state diagram by
carefully choosing state register bit values. Your state machine should be described
with symbolic names for the states, as described above. Then, if you assign the
numeric constants to these names so the state register bits change by only one bit at
a time as the state machine goes from state to state, you will reduce the number of
product terms required to describe the state transitions.

As an example, take the states A, B, C, and D, which go from one state to the other in
alphabetical order. The simplest choice of bit values for the state register is a numeric
sequence, but this is not the most efficient method. To see why, examine the following
bit value assignments. The preferred bit values cause a one-bit change as the
machine moves from state B to C, whereas the simple bit values cause a change in
both bit values for the same transition. The preferred bit values produce fewer product

terms.
State Simple Preferred
Bit Values Bit Values
A 00 00
B 01 01
C 10 11
D 11 10

If one of your state register bits uses too many product terms, try reorganizing the bit
values so that state register bit changes in value as few times as possible as the state
machine moves from state to state.

Obviously, the choice of optimum bit values for specific states can require some
tradeoffs; you may have to optimize for one bit and, in the process, increase the value
changes for another. The object should be to eliminate as many product terms as
necessary to fit the design into the device.

Use State Register Outputs to Identify States

Sometimes it is necessary to identify specific states of a state machine and signal an
output that the machine is in one of these states. Fewer equations and outputs are
needed if you organize the state register bit values so one bit in the state register
determines if the machine is in a state of interest. Take, for example, the following
sequence of states in which identification of the Cn states is required:

ABEL Design Manual 72



State Machines

State Register Bit Values
State Name Q3

HHHOOCQ
oOOoRrRRERLgPRr

0
0
1
C2 1
1
0

This choice of state register bit values allows you to use Q3 as a flag to indicate when
the machine is in any of the Cn states. When Q3 is high, the machine is in one of the
Cn states. Q3 can be assigned directly to an output pin on the device. Notice also that
these bit values change by only one bit as the machine cycles through the states, as
is recommended in the section above.

ABEL Design Manual 73



State Machines

Using Symbolic State Descriptions

Symbolic state descriptions describe a state machine without having to specify actual
state values. A symbolic state description is shown below.

module SM
a,b,clock pin; "inputs
a_reset,s_reset pin; " reset inputs
X,y pin istype ‘com’; " simple outputs
sregl state_register;

S0..S3 state;

equations
sregl.clk = clock;

state_diagram sregl
state SO:
goto S1 with {x = a & b;
y=0; }
state S1:if (a & b)
then S2 with {x = 0;
y=1}
state S2: x=a & b;
y=1
if (@) then S1 else S2;
state S3:
goto SO with {x = 1,
y=0;}

async_reset SO: a_reset;
sync_reset SO: s_reset;
end

Figure 4-16. Symbolic State Description

Symbolic state descriptions use the same syntax as non-symbolic state descriptions;
the only difference is the addition of the STATE_REGISTER and STATE declarations,
and the addition of symbolic synchronous and asynchronous reset statements.

Symbolic Reset Statements

In symbolic state descriptions, the SYNC_RESET and ASYNC_RESET statements
specify synchronous or asynchronous state machine reset logic. For example, to
specify that a state machine must asynchronously reset to state Start when the Reset
input is true, you write

ASYNC_RESET Start : (Reset) ;

ABEL Design Manual 74



Using Complement Arrays

Symbolic Test Vectors

You can also write test vectors to refer to symbolic state values by entering the
symbolic state register name in the test vector header (in the output sections), and
the symbolic state names in the test vectors as output values.

Using Complement Arrays

The complement array is a unique feature found in some logic sequencers. This
section shows a typical use ending counter sequence.

You can use transition equations to express the design of counters and state
machines in some devices with JK or SR flip-flops. A transition equation expresses a
state of the circuit as a variation of, or adjustment to, the previous state. This type of
eqguation eliminates the need to specify every node of the circuit; you can specify only
those that require a transition to the opposite state.

An example of transition equations is shown in Figure 4-17, a source file for a decade
counter having a single (clock) input and a single latched output. This counter divides
the clock input by a factor of ten and generates a 50% duty-cycle squarewave output.
In addition to its registered outputs, this device contains a set of “buried” (or
feedback) registers whose outputs are fed back to the product term inputs. These
nodes must be declared, and can be given any names.

Node 49, the complement array feedback, is declared (as COMP) so that it can be
entered into each of the equations. In this design, the complement array feedback is
used to wrap the counter back around to zero from state nine, and also to reset it to
zero if an illegal counter state is encountered. Any illegal state (and also state 9) will
result in the absence of an active product term to hold node 49 at a logic low. When
node 49 is low, product term 9 resets each of the feedback registers so the counter is
set to state zero. (To simplify the following description of the equations in Figure 4-17,
node 49 and the complement array feedback are temporarily ignored.)

The first equation states that the FO (output) register is set (to provide the counter
output) and the PO register is set when registers PO, P1, P2, and P3 are all reset
(counter at state zero) and the clear input is low. The complemented outputs of the
registers (with the clear input low) form product term 0. Product term O sets register
PO to increment the decade counter to state 1, and sets register FO to provide an
output at pin 18.

ABEL Design Manual 75



Using Complement Arrays

module DECADE
title 'Decade Counter Uses Complement Array
Michael Holley Data I/O Corp'

decade device 'F105;
Clk,CIr,FO,PR pin 1,8,18,19;
P3..PO0 node 40..37;

COMP node 49;

FO0,P3..PO istype 'reg_sr,buffer’;

_State =[P3,P2,P1,PO0];
H,L,Ck,X =1,0,.C, .X;
equations

[P3,P2,P1,P0,FOl.ap = PR;
[FO,P3,P2,P1,P0].clk = CIk;

"Output Next State Present State Input

[FO.S, COMP, P0.S] =1P3.Q & 'P2.Q & 'P1.Q & 'P0.Q & ICIr; "0 to 1

[ COMP, P1.S,PO.R] =!P3.Q & IP2.Q & 'P1.Q & P0.Q &!ClIr; "1 to 2

[ COMP, P0.S]='P3.Q & IP2.Q & P1.Q &'P0.Q &!CIr;"2t0 3

[ COMP, P2.SP1R,PO.RI=IP3.Q&'P2.Q& P1.Q& P0.Q&!CIr;"3t0 4
[ COMP, P0.S]='P3.Q & P2.Q &!'P1.Q &!P0.Q & !Clr; "4t0 5
[FO.R, COMP, P1.S,PO.R]=!P3.Q & P2.Q & 'P1.Q & P0.Q &!CIr;"5t0 6
[ COMP, P0.S]=1P3.Q & P2.Q & P1.Q &'!'P0.Q &!CIr;"6to 7

[ COMP,P3.S,P2.R,P1.R,PO.R]=!P3.Q & P2.Q & P1L.Q & P0.Q&!CIr;"7t0 8
[ COMP P0.S] = P3.Q &!P2.Q & 'P1.Q & 'P0.Q & !CIr; "8 t0 9

[ P3.R,P2.R,P1.R,PO.R] = ICOMP; "Clear

"After Preset, clocking is inhibited until High-to-Low clock transition.
test_vectors ([CIk,PR,CIr] ->[_State,F0 ])
[0,0,0]>] X ,X];
[1,1,0]->["b1l111, HJ; " Preset high
[1,0,0]->["b1l111, H]; " Preset low
[Ck,0,0]->[ O ,H] " COMP forces to State 0
[Ck,0,0]->] 1 ,H];
..vectors edited...
[Ck,0,2]->[ O ,H] "Clear
end

Figure 4-17. Transition Equations for a Decade Counter

The second equation performs a transition from state 1 to state 2 by setting the P1
register and resetting the PO register. (The .R dot extension is used to define the
reset input of the registers.) In state 2, the FO register remains set, maintaining the
high output. The third equation again sets the PO register to achieve state 3 (PO and
P1 both set), while the fourth equation resets PO and P1, and sets P2 for state 4, and
So on.

ABEL Design Manual 76



ABEL-HDL and Truth Tables

Wraparound of the counter from state 9 to state O is achieved by means of the
complement array node (node 49). The last equation defines state 0 (P3, P2, P1, and
PO all reset) as equal to \COMP, that is, node 49 at a logic low. When this equation is
processed, the fuses are blown. As a result, the !\COMP signal is true to generate
product term 9 and reset all the “buried” registers to zero.

ABEL-HDL and Truth Tables

Truth Tables in ABEL-HDL represent a very easy and straightforward description
method, well suited in a number of situations involving combinational logic.

The principle of the Truth Table is to build an exhaustive list of the input combinations
(referred to as the ON-set) for which the output(s) become(s) active.

The following list summarizes design considerations for Truth Tables. Following the
list are more detailed examples.

m  The OFF-set lines in a Truth Table are necessary when more than one output is
assigned in the Truth Table. In this case, not all Outputs are fired under the same
conditions, and therefore OFF-set conditions do exist.

n  OFF-setlines are ignored because they represent the default situation, unless the
output variable is declared dc. In this case, a third set is built, the DC-set and the
Output inside it is assigned proper values to achieve the best logic reduction
possible.

= If output type dc (or @dcset) is not used and multiple outputs are specified in a
Truth table, consider the outputs one by one and ignore the lines where the
selected output is not set.

= Don't Cares (.X.) used on the right side of a Truth Table have no optimization
effect.

= When dealing with multiple outputs of different kind, avoid general settings like
@DCSET which will affect all your outputs. Use istype “.....DC’ on outputs for
which this reduction may apply.

= Beware of Outputs for which the ON-set might be empty.

= As a general guideline, it is important not to rely on first impression or simple
intuition to understand Truth tables. The way they are understood by the compiler
is the only possible interpretation. This means that Truth Tables should be
presented in a clear and understandable format, should avoid side effects, and
should be properly documented (commented).

ABEL Design Manual 77



ABEL-HDL and Truth Tables

Basic Syntax - Simple Examples

In this example, the lines commented as L1 and L2 are the ON-set.

Lines L3 and L4 are ignored because Out is type default (meaning ‘0’ for unspecified
combinations). The resulting equation does confirm this.

MODULE DEMO1
TITLE 'Example 1'
" Inputs
A, B, C pin;
"Output
Out pin istype ‘com’;
Truth_Table
([A,B,C] -> Out)
[0,1,0]->1; /I L1
[1,1,1]->1; /I L2
[0,0,1] > 0; // L3
[1,0,0]->0; // L4
END
/l Resulting Reduced Equation :
/IOut=(A&B&!C) # (A&B &C);

Example 2 differs from example 1 because Out is now type ‘COM, DC’. (optimizable
don’t care).

In this case, the lines commented as L1 and L2 are the ON-set, L3 and L4 are the
OFF-set and other combinations become don’t care (DC-set) meaning 0 or 1 to
produce the best logic reduction. As a result in this example, the equation is VERY
simple.

@DCSET instruction would have produced the same result as to declare Out of type
dc. But @DCSET must be used with care when multiple outputs are defined: they all
become dc.

MODULE DEMO1
TITLE 'Example 2'
" Inputs
A, B, C pin;
"Output
Out pin istype ‘com,
Truth_Table
([A,B,C] -> Out)
[0,1,0] ->1; /L1
[1,2,1]->1; /[ L2
[0,0,1]->0; // L3
[1,0,0] ->0; // L4
END
// Resulting Reduced Equation :
/l Out = (B);

ABEL Design Manual 78



ABEL-HDL and Truth Tables

Influence of Signal polarity

We will see now with example 3 how the polarity of the signal may influence the truth
table:

In this example, Outl and Out2 are strictly equivalent. For !Outl, note that the ON-set
is the O values. The third line L3 is ignored.

MODULE DEMO2
TITLE 'Example 3
" Inputs
A, B, C pin;
"Output
Outlpin istype '‘com, neg’;
Out2pin istype 'com, neg’;
Out3pin istype '‘com, neqg’; // BEWARE

Truth_Table
([A,B,C] -> [!Outl, Out2, Out3])
[0,0,1]->[ 0, 1, O]/l
[0,1,2]->[ 0, 1, O];/L2
[1,2,0]->[ 1, O, 1];/L3
END
/l Resulting Equations :
/[ '0utl =!0ut2 = (A #!C);
/[l or: Outl = Out2 = ('A & C);
/[ BUT: Out3 = (A & B & !C); <<what you wanted ?

For active-low outputs, one must be careful to specify 1 for the active state if the
Output appears without the exclamation point (!).
0 must be used when !output is defined in the table header.

We recommend the style used for Outl.

For Out3, line used is L3, L1 and L2 are ignored.

ABEL Design Manual 79



ABEL-HDL and Truth Tables

Using .X. in Truth tables conditions

Don’t Care used on the left side in Truth tables have no optimization purpose. they
only serve as a shortcut to write several conditions in one single line.

Be careful when using .X. in conditions. This can lead to overlapping conditions which
look not consistent (see example below). Due to the way the compiler work, this type
of inconsistency is not checked nor reported. In fact, only the ON-set condition is
taken into account, the OFF-set condition is ignored.

The following example illustrates this:

MODULE DEMO3
TITLE 'Example 4
" Inputs
A, B, C pin;
"Output
Outpin istype 'com’;
" Equivalence
X=X
Truth_Table
([A,B,C] -> Out)
[0,0,1] -> 0; //L1 ignored in fact
[0,1,0] -> 1;//L2
[1,X,X]-> 1;//L3
[0,0,1] -> 1;//L4 incompatible
[1,1,0] -> 0; //L5 incompatible
END
/I Result: Out=A# B &!C)# ('B&C)

L1 is in fact ignored. Out is active high, therefore only line L4 is taken into account.
Likewise, L5 intersects L3, but is ignored since it is not in the ON-set for Out.

Globally, only L2, L3 and L4 are taken into account, as we can check in the resulting
equation, without any error reported.

ABEL Design Manual 80



ABEL-HDL and Truth Tables

Using .X. on the right side

The syntax allows to use .X. as a target value for an output. In this case, the condition
is simply ignored.

D NOTE This is not the method to specify optimizable don’t care states.
See example 2 for such an example.

Example 6 shows that-> .X. states are not optimized if DC type or @DCSET are not
used.

These lines are ALWAYS ignored.

MODULE DEMOG6
TITLE 'Example 6'
" Inputs
A, B, C pin;
"Output
Outpin istype 'com’;
" Equivalence
X=X
Truth_Table
([A,B,C] -> Out)
[0,0,0]1 -> O;
[0,0,1] > X;
[0,1,0] > 1;
[0,1,1] > X;
[1,X,X] -> X;
END
/[ Asis:Out=('A & B &!C);
/I With istype 'com,DC' : Out = (B);

They are in fact of no use, except maybe as a way to document that output does not
matter.

ABEL Design Manual 81



ABEL-HDL and Truth Tables

Special case: Empty ON-set

There is a special case which is unlikely to happen, but may sometimes occurs.
Consider this example:

MODULE DEMO5
TITLE 'Example 5'
" Inputs
A, B, C pin;
"Output
Outpin istype 'com, pos';
Truth_Table
([A,B,C] -> Out)
[0,0,1] -> O;
[0,1,0] -> O;
[1,0,0] -> O;
/I 10,0,0] -> 1;//changes everything!
END
// Without the last line L4 :
/I'Out=(A & 'B & IC)# (IA & B & IC)# (IA & 'B & C);
/I WITH L4 : Out = (A & !B & !C);

What we obtain is slightly unexpected. This table should produce Out=0; as the
result. (We enumerated only OFF conditions, and the polarity is POS (or default), so
unlisted cases should also turn into zeroes.)

One reason to build such a table could be when multiple outputs are defined, and
when Out needs to be shut off for whatever reason.

In the absence of the line L4, the result is not intuitive. The output is O only for the
listed cases (L1, L2, L3), and is 1 for all other cases, even if dc or pos is used.

When line L4 is restored, then the output equation becomes Out = ('A & IB & !C);
because we fall in the general situation where the ON-set is not empty.

Registered Logic in Truth tables

Truth Tables can specify registered outputs. In this case, the assignment become :>
(instead of ->).

For more information, refer to the ABEL-HDL Reference Manual .

ABEL Design Manual 82



Index

Symbols
‘attribute’

and polarity control 54
‘collapse’

selective collapsing 42
neg’

and polarity control 53
.D 56
.FB 55
.PIN 55

Q55

alternate flip-flop types 50
@DCSET

example 61

with state machines 68
'xor' 62
“collapse”

collapsing nodes 42
“Keep”

collapsing nodes 42

A
ABEL-HDL
enter an ABEL-HDL description 25
enter logic description 27
enter test vectors 28
overview 14
properties 31
strategies 32
ABEL-HDL Compiling 24
Active-low declarations 51
actlowl.abl 52
actlow2.abl 51
Attributes
and architecture independence 43
Architecture independence
attributes 43
dot extensions 43,56
dot extensions, example 57
resolving ambiguities 44
Arrays, complement 75

Attributes

collapsing nodes 42

in lower-level sources 39
Auto-update 29

B
Bottom-up design 20

C

Collapsing nodes 42
selective 42

Combinational nodes 40

Compilation 17

Complement arrays 75
example 76

D
D flip-flop
unsatisfied transition conditions 67
Dangling nodes 40
dc
and polarity control 53
dc.abl 61
Dc-set 60
and optimization 61
decade.abl 76
Declarations
active-low 51
Design hierarchy 17
Design Overview
compilation 17
device programming 17
hierarchy 17
projects 15
simulation 17
sources 16
Dot extensions
and detail descriptions 58
Detail descriptions 45
and macrocells 45
example, dot extensions
example, inverting 48
example, non-inverting 47
when to use 50

8,59

ABEL Design Manual

83



Index

detaill.abl 58
detail2.abl 59
Device programming 17
Devices
programmable polarity 53
Don't Care .X.
on left side of Truth Table 80
on right side of Truth Table 81
Detail descriptions
and dot extensions 58
Dot extensions
.D 56
.FB 55
.PIN 55
.Q 35
and architecture independence 43,56
and architecture independence,
example 57
and feedback 55
example, detail
no 55

8,59

E
Emulation of flip-flops 63
Equation polarity 53
Equations

for flip-flops 54

XOR 62

F

Feedback
and dot extensions 55
merging 41

Flip-flops
and dot extensions 54
detail descriptions 50
D-type 67
emulation with XORs 63
state diagrams 50
using := with 50

H
Hierarchical design
abstract 19
advantages of 19
approaches to 19
bottom-up 20
defined for ABEL-HDL 20
mixed 20
philosophy 1

symbols in 2

techniques 19
top-down 20
Hierarchical levels
defined 18
Hierarchy 17,38
modular design 18,19

|
Identifiers

in state machines 65
Inside-out design 20
Instantiation 38
Interface

submodule 39
Istype, and polarity control 54

J

JK flip-flop
and := 50
emulation of 63

L

Linking modules
merging feedbacks 41
post-linked optimization 41

Lower-level sources 39
instantiating 38

M
Mixed design 20

N

Node
collapsing 42
combinational 40
complement arrays 75
dangling 40
registered 40
removing redundant 41
selective collapsing 42

O
Off-set 60
One-bit changes 72
On-set 60
in Truth Tables 78
Optimization
and @DCSET 61
of XORs 62
post-linked 41
reducing product terms 72
Output enables 39

ABEL Design Manual

84



Index

P
pin2pin.abl 57
Pin-to-pin descriptions 44

and flip-flops 54

example 47

resolving ambiguities 44
Polarity control 53

active levels 53
Ports

declaring lower-level 39
Post-linked Optimization 41
Powerup state 67
Preset

built-in, example 48
Product terms

reducing 72
Programmable designing 12
Programmable polarity, active levels for

devices 53

Project sources 16
Properties 31

Q

Q11.abl 47
Q12.abl 47
Q13.abl 48
Q15.abl 49
Q17.abl 49

R

Redundant nodes 41

Registered design descriptions 44

Registered nodes 40

Registers
bit values in state machines 72
cleared state in state machines 67
powerup states 67

Reset
example, inverted architecture 49
example, non-inverted architecture 49
resolving ambiguities 49

S
Selective collapsing 42
sequence.abl 66
Simulation 17
Sources
ABEL-HDL 16
device 16
graphic waveform stimulus 16
project notebook 16
schematic 16

test vector 16
Verilog HDL 16
Verilog test fixture 16
VHDL 16
VHDL test bench 16
SR flip-flop
and := 50
State machine example 66
@DCSET 70
no @DCSET 68
State machines
and @DCSET 61, 68
cleared register state 67
design considerations 65
identifiers in 65
identifying states 72
illegal states 67
powerup register states 67
reducing product terms 72
using state register outputs 72
State registers 72
Strategies 32
Symbolic state descriptions 74

T
T flip-flop

and equations 54
Top-down design 20
traffic.abl 68
trafficl.abl 70
Transferring designs 43
Transition conditions 67
Tristate outputs 39
Truth Tables

ABEL-HDL 77

X

x1.abl 62

x2.abl 62

XORs
and operator priority 63
example 62
flip-flop emulation 63
implied 62
optimization of 62

ABEL Design Manual 85



	Main Table of Contents
	ABEL Design Manual
	Table of Contents
	Preface
	What is in this Manual
	Where to Look for Information

	Documentation Conventions
	Related Documentation

	Chapter 1 ABEL-HDL Overview
	Programmable Design in ispDesignExpert
	What is Programmable Designing?
	What is ABEL-HDL?

	Overview of Design
	Projects
	Project Sources
	Design Hierarchy
	Design Compilation
	Design Simulation
	Device Programming


	Chapter 2 ABEL-HDL Hierarchical Designs
	Why Use Hierarchical Design?
	Approaches to Hierarchical Design
	Creating a new Hierarchical Design
	Top-down Design
	Bottom-up Design
	Inside-out (Mixed) Design


	Specifying a Lower-level Module

	Chapter 3 Compiling ABEL-HDL Designs
	Overview of ABEL-HDL Compiling
	Design Entry
	Creating a Design Using ABEL-HDL Sources

	Design Compliation
	Keeping Track of Process: Auto-update
	Compiling an ABEL-HDL Source File
	Using Properties and Strategies

	Design Simulation


	Chapter 4 ABEL-HDL Design Considerations
	Overview of ABEL-HDL Design Considerations
	Hierarchy in ABEL-HDL
	Instantiating a Lower-level Module in an ABEL-HDL Source
	Identifying I/O Ports in the Lower-level Module
	Declaring Lower-level Modules in the Top-level Source
	Instantiating Lower-level Modules in Top-level Source

	Hierarchy and Retargeting and Fitting
	Redundant Nodes
	Merging Feedbacks
	Post-linked Optimization


	Hierarchical Design Considerations
	Prevent Node Collapsing

	Node Collapsing
	Selective Collapsing

	Pin-to-pin Language Features
	Device-independence vs. Architecture-independence
	Signal Attributes
	Signal Dot Extensions

	Pin-to-pin vs. Detailed Descriptions for Registered Designs
	Using := for Pin-to-pin Descriptions
	Resolving Ambiguities

	Detailed Circuit Descriptions
	Detailed Descriptions: Designing for Macrocells

	Examples of Pin-to-pin and Detailed Descriptions
	Pin-to-pin Module Description
	Detailed Module Description

	Detailed Module with Inverted Outputs
	When to Use Detailed Descriptions
	Using := for Alternative Flip-flop Types

	Using Active-low Declarations
	Polarity Control
	Polarity Control with Istype
	Using Istype ‘neg’, ‘pos’, and ‘dc’ to Control Equation and Device Polarity
	Using ‘invert’ and ‘buffer’ to Control Programmable Inversion


	Flip-flop Equations
	Feedback Considerations — Dot Extensions
	Dot Extensions and Architecture-Independence
	Dot Extensions and Detail Design Descriptions

	Using Don’t Care Optimization
	Exclusive OR Equations
	Optimizing XOR Devices
	Using XOR Operators in Equations
	Using Implied XORs in Equations
	Using XORs for Flip-flop Emulation
	JK Flip-Flop Emulation


	State Machines
	Use Identifiers Rather Than Numbers for States
	Powerup Register States
	Unsatisfied Transition Conditions
	D-Type Flip-Flops
	Other Flip-flops

	Precautions for Using Don’t Care Optimization
	Number Adjacent States for One-bit Change
	Use State Register Outputs to Identify States
	State Register Bit Values

	Using Symbolic State Descriptions
	Symbolic Reset Statements
	Symbolic Test Vectors


	Using Complement Arrays
	ABEL-HDL and Truth Tables
	Basic Syntax - Simple Examples
	Influence of Signal polarity
	Using .X. in Truth tables conditions
	Using .X. on the right side
	Special case: Empty ON-set
	Registered Logic in Truth tables


	Index


