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4.6 The ABEL Hardware Design Language
ABEL is a hardware design language (HDL) that was invented to allow design-
ers to specify logic functions for realization in PLDs. An ABEL program is a
text file containing several elements:

• Documentation, including program name and comments.

• Declarations that identify the inputs and outputs of the logic functions to
be performed.

• Statements that specify the logic functions to be performed.

• Usually, a declaration of the type of PLD or other targeted device in which
the specified logic functions are to be performed.

• Usually, “test vectors” that specify the logic functions’ expected outputs
for certain inputs.

ABEL is supported by an ABEL language processor, which we’ll simply call an
ABEL compiler. The compiler’s job is to translate the ABEL text file into a “fuse
pattern” that can be downloaded into a physical PLD. Even though most PLDs
can be physically programmed only with patterns corresponding to sum-of-
products expressions, ABEL allows PLD functions to be expressed using truth
tables or nested “IF” statements as well as by any algebraic expression format.
The compiler manipulates these formats and minimizes the resulting equations
to fit, if possible, into the available PLD structure.

We’ll talk about PLD structures, fuse patterns, and related topics later, in
\secref{PLDs} and show how to target ABEL programs to specific PLDs. In the
meantime, we’ll show how ABEL can be used to specify combinational logic
functions without necessarily having to declare the targeted device type. Later,
in \chapref{seqPLDs}, we’ll do the same for sequential logic functions.

4.6.1 ABEL Program Structure
Table 4-10 shows the typical structure of an ABEL program, and Table 4-11
shows an actual program exhibiting the following language features:

• Identifiers must begin with a letter or underscore, may contain up to 31
letters, digits, and underscores, and are case sensitive.

• A program file begins with a module statement, which associates an iden-
tifier (Alarm_Circuit) with the program module. Large programs can
have multiple modules, each with its own local title, declarations, and
equations. Note that keywords such as “module” are not case sensitive.

LEGAL NOTICE ABEL (Advanced Boolean Equation Language) is a trademark of Data I/O
Corporation (Redmond, WA 98073).

ABEL language 
processor

ABEL compiler

identifier
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• The title statement specifies a title string that will be inserted into the
documentation files that are created by the compiler.

• A string is a series of characters enclosed by single quotes.

• The optional device declaration includes a device identifier (ALARMCKT)
and a string that denotes the device type (’ P16V8C’  for a GAL16V8). The
compiler uses the device identifier in the names of documentation files that
it generates, and it uses the device type to determine whether the device can
really perform the logic functions specified in the program.

• Comments begin with a double quote and end with another double quote
or the end of the line, whichever comes first. 

• Pin declarations tell the compiler about symbolic names associated with
the device’s external pins. If the signal name is preceded with the NOT
prefix (!), then the complement of the named signal will appear on the pin.
Pin declarations may or may not include pin numbers; if none are given,
the compiler assigns them based on the capabilities of the targeted device.

• The istype keyword precedes a list of one or properties, separated by
commas. This tells the compiler the type of output signal. The “com”
keyword indicates a combinational output. If no istype keyword is given,
the compiler generally assumes that the signal is an input unless it appears
on the left-hand side of an equation, in which case it tries to figure out the
output’s properties from the context. For your own protection, it’s best just
to use the istype keyword for all outputs!

• Other declarations allow the designer to define constants and expressions
to improve program readability and to simplify logic design.

• The equations statement indicates that logic equations defining output
signals as functions of input signals will follow.

• Equations are written like assignment statements in a conventional
programming language. Each equation is terminated by a semicolon.
ABEL uses the following symbols for logical operations:

Ta b l e  4 - 1 0
Typical structure of an 
ABEL program.

module module name

title string

deviceID device deviceType;

pin declarations

other declarations

equations

equations

test_vectors

test vectors

end module name

title

string

device

comment

pin declarations

istype

com

other declarations

equations

equations
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& AND.

# OR. 

! NOT (used as a prefix).

$ XOR. 

!$ XNOR. 

As in conventional programming languages, AND (&) has precedence over
OR (#) in expressions. The @ALTERNATE directive can be used to make the
compiler recognize an alternate set of symbols for these operations: +, *, /
, :+:, and :*:, respectively. This book uses the default symbols.

• The optional test_vectors statement indicates that test vectors follow.

• Test vectors associate input combinations with expected output values;
they are used for simulation and testing as explained in Section 4.6.7.

Ta b l e  4 - 1 1 An ABEL program for the alarm circuit of Figure 4-11.

module Alarm_Circuit 
title ’Alarm Circuit Example
J. Wakerly, Micro Systems Engineering’ 
ALARMCKT device ’P16V8C’; 

" Input pins 
PANIC, ENABLEA, EXITING      pin 1, 2, 3; 
WINDOW, DOOR, GARAGE         pin 4, 5, 6; 
" Output pins 
ALARM                        pin 11 istype ’com’;

" Constant definition
X = .X.;

" Intermediate equation 
SECURE = WINDOW & DOOR & GARAGE;

equations
ALARM = PANIC # ENABLEA & !EXITING & !(WINDOW & DOOR & GARAGE);

test_vectors
([PANIC,ENABLEA,EXITING,WINDOW,DOOR,GARAGE] -> [ALARM])
[     1,    .X.,    .X.,   .X., .X.,   .X.] -> [    1];
[     0,      0,    .X.,   .X., .X.,   .X.] -> [    0];
[     0,      1,      1,   .X., .X.,   .X.] -> [    0];
[     0,      1,      0,     0, .X.,   .X.] -> [    1];
[     0,      1,      0,   .X.,   0,   .X.] -> [    1];
[     0,      1,      0,   .X., .X.,     0] -> [    1];
[     0,      1,      0,     1,   1,     1] -> [    0];

end Alarm_Circuit

& (AND)

# (OR)

! (NOT)

$ (XOR)

!$ (XNOR)

@ALTERNATE

test_vectors

test vectors
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• The compiler recognizes several special constants, including .X., a single
bit whose value is “don’t-care.” 

• The end statement marks the end of the module.

Equations for combinational outputs use the unclocked assignment opera-
tor,  =. The left-hand side of an equation normally contains a signal name. The
right-hand side is a logic expression, not necessarily in sum-of-products form.
The signal name on the left-hand side of an equation may be optionally preceded
by the NOT operator !; this is equivalent to complementing the right-hand side.
The compiler’s job is to generate a fuse pattern such that the signal named on the
left-hand side realizes the logic expression on the right-hand side. 

4.6.2 ABEL Compiler Operation
The program in Table 4-11 realizes the alarm function that we described on
page 213. The signal named ENABLE has been coded as ENABLEA because
ENABLE is a reserved word in ABEL.

Notice that not all of the equations appear under the equations statement.
An equation for an intermediate variable, SECURE, appears earlier. This equation
is merely a definition that associates an expression with the identifier SECURE.
The ABEL compiler substitutes this expression for the identifier SECURE in
every place that SECURE appears after its definition. 

In Figure 4-19 on page 214 we realized the alarm circuit directly from the
SECURE and ALARM expressions, using multiple levels of logic. The ABEL
compiler doesn’t use expressions to interconnect gates in this way. Rather, it
“crunches” the expressions to obtain a minimal two-level sum-of-products result
appropriate for realization in a PLD. Thus, when compiled, Table 4-11 should
yield a result equivalent to the AND-OR circuit that we showed in Figure 4-20 on
page 214, which happens to be minimal.

In fact, it does. Table 4-12 shows the synthesized equations file created by
the ABEL compiler. Notice that the compiler creates equations only for the
ALARM signal, the only output. The SECURE signal does not appear anywhere.

The compiler finds a minimal sum-of-products expression for both ALARM

and its complement, !ALARM. As mentioned previously, many PLDs have the
ability selectively to invert or not to invert their AND-OR output. The “reverse
polarity equation” in Table 4-12 is a sum-of-products realization of !ALARM, and
would be used if output inversion were selected. 

In this example, the reverse-polarity equation has one less product term
than the normal-polarity equation for ALARM, so the compiler would select this
equation if the targeted device has selectable output inversion. A user can also
force the compiler to use either normal or reverse polarity for a signal by includ-
ing the keyword “buffer” or “invert,” respectively, in the signal’s istype
property list. (With some ABEL compilers, keywords “pos” and “neg” can be
used for this purpose, but see Section 4.6.6.)

.X.

end

unclocked assignment 
operator, =
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4.6.3 WHEN Statements and Equation Blocks
In addition to equations, ABEL provides the WHEN statement as another means
to specify combinational logic functions in the equations section of an ABEL
program. Table 4-13 shows the general structure of a WHEN statement, similar to
an IF statement in a conventional programming language. The ELSE clause is
optional. Here LogicExpression is an expression which results in a value of true
(1) or false (0). Either TrueEquation or FalseEquation is “executed” depending

Ta b le  4 - 1 2 Synthesized equations file produced by ABEL for program 
in Table 4-11.

ABEL 6.30

Design alarmckt created Tue Nov 24 1998

Title: Alarm Circuit Example
Title: J. Wakerly, Micro Systems Engineering

 P-Terms   Fan-in  Fan-out  Type  Name (attributes)
---------  ------  -------  ----  -----------------
   4/3        6        1    Pin   ALARM 
=========
   4/3          Best P-Term Total: 3
                       Total Pins: 7
                      Total Nodes: 0
            Average P-Term/Output: 3

Equations:

ALARM = (ENABLEA & !EXITING & !DOOR
     # ENABLEA & !EXITING & !WINDOW
     # ENABLEA & !EXITING & !GARAGE
     # PANIC);

Reverse-Polarity Equations:

!ALARM = (!PANIC & WINDOW & DOOR & GARAGE
     # !PANIC & EXITING
     # !PANIC & !ENABLEA);
 

WHEN LogicExpression THEN

TrueEquation;

ELSE 

FalseEquation;

Ta b le  4 - 1 3
Structure of an ABEL 
WHEN statement.

WHEN statement
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on the value of LogicExpression. But we need to be a little more precise about
what we mean by “executed,” as discussed below.

In the simplest case, TrueEquation and the optional FalseEquation are
assignment statements, as in the first two WHEN statements in Table 4-14 (for X1

and X2). In this case, LogicExpression is logically ANDed with the right-hand
side of TrueEquation, and the complement of LogicExpression is ANDed with
the right-hand side of FalseEquation. Thus, the equations for X1A and X2A pro-
duce the same results as the corresponding WHEN statements but do not use WHEN. 

Notice in the first example that X1 appears in the TrueEquation, but there is
no FalseEquation. So, what happens to X1 when LogicExpression (!A#B) is
false? You might think that X1’s value should be don’t-care for these input
combinations, but it’s not, as explained below.

Formally, the unclocked assignment operator, =, specifies input combina-
tions that should be added to the on-set for the output signal appearing on the
left-hand side of the equation. An output’s on-set starts out empty, and is aug-
mented each time that the output appears on the left-hand side of an equation.
That is, the right-hand sides of all equations for the same (uncomplemented)
output are ORed together. (If the output appears complemented on the left-hand
side, the right-hand side is complemented before being ORed.) Thus, the value
of X1 is 1 only for the input combinations for which LogicExpression (!A#B) is
true and the right-hand side of TrueEquation (C&!D) is also true.

In the second example, X2 appears on the left-hand side of two equations,
so the equivalent equation shown for X2A is obtained by ORing two right-hand
sides after ANDing each with the appropriate condition. 

The TrueEquation and the optional FalseEquation in a WHEN statement can
be any equation. In addition, WHEN statements can be “nested” by using another
WHEN statement as the FalseEquation. When statements are nested, all of the
conditions leading to an “executed” statement are ANDed. The equation for X3
and its WHEN-less counterpart for X3A in Table 4-14 illustrate the concept.

The TrueEquation can be another WHEN statement if it’s enclosed in braces,
as shown in the X4 example in the table. This is just one instance of the general
use of braces described shortly.

Although each of our WHEN examples have assigned values to the same out-
put within each part of a given WHEN statement, this does not have to be the case.
The second-to-last WHEN statement in Table 4-14 is such an example.

It’s often useful to make more than one assignment in TrueEquation or
FalseEquation or both. For this purpose, ABEL supports equation blocks any-
where that it supports a single equation. An equation block is just a sequence of
statements enclosed in braces, as shown in the last WHEN statement in the table.
The individual statements in the sequence may be simple assignment state-
ments, or they may be WHEN statements or nested equation blocks. A semicolon
is not used after a block’s closing brace. Just for fun, Table 4-15 shows the
equations that the ABEL compiler produces for the entire example program. 

equation block
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Ta b l e  4 - 1 4  Examples of WHEN statements.

module WhenEx 
title ’WHEN Statement Examples’ 

" Input pins 
A, B, C, D, E, F                 pin; 

" Output pins 
X1, X1A, X2, X2A, X3, X3A, X4    pin istype ’com’;
X5, X6, X7, X8, X9, X10          pin istype ’com’;

equations

WHEN (!A # B) THEN X1 = C & !D;

X1A = (!A # B) & (C & !D);

WHEN (A & B) THEN X2 = C # D;
ELSE X2 = E # F;

X2A = (A & B) & (C # D)
    # !(A & B) & (E # F);

WHEN (A) THEN X3 = D;
ELSE WHEN (B) THEN X3 = E;
ELSE WHEN (C) THEN X3 = F;

X3A = (A) & (D)
    # !(A) & (B) & (E)
    # !(A) & !(B) & (C) & (F);

WHEN (A) THEN 
  {WHEN (B) THEN X4 = D;}
ELSE X4 = E;

WHEN (A & B) THEN X5 = D;
ELSE WHEN (A # !C) THEN X6 = E;
ELSE WHEN (B # C) THEN X7 = F;

WHEN (A) THEN {
    X8 = D & E & F;
    WHEN (B) THEN X8 = 1; ELSE {X9 = D; X10 = E;}
} ELSE {
    X8 = !D # !E;
    WHEN (D) THEN X9 = 1;
    {X10 = C & D;}  
}

end WhenEx
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Ta b l e  4 - 1 5 Synthesized equations file produced by ABEL for program in Table 4-14.

ABEL 6.30

Design whenex created Wed Dec 2 1998

Title: WHEN Statement Examples

 P-Terms  Fan-in Fan-out Type Name 
--------- ------ ------- ---- -----
   2/3       4       1   Pin  X1 
   2/3       4       1   Pin  X1A 
   6/3       6       1   Pin  X2 
   6/3       6       1   Pin  X2A 
   3/4       6       1   Pin  X3 
   3/4       6       1   Pin  X3A 
   2/3       4       1   Pin  X4 
   1/3       3       1   Pin  X5 
   2/3       4       1   Pin  X6 
   1/3       3       1   Pin  X7 
   4/4       5       1   Pin  X8 
   2/2       3       1   Pin  X9 
   2/4       5       1   Pin  X10 
=========
  36/42     Best P-Term Total: 30
                   Total Pins: 19
                  Total Nodes: 0
        Average P-Term/Output: 2

Equations:

X1 = (C & !D & !A
     # C & !D & B);

X1A = (C & !D & !A
     # C & !D & B);

X2 = (D & A & B
     # C & A & B
     # !B & E
     # !A & E
     # !B & F
     # !A & F);

X2A = (D & A & B
     # C & A & B
     # !B & E
     # !A & E
     # !B & F
     # !A & F);

X3 = (C & !A & !B & F
     # !A & B & E
     # D & A);

X3A = (C & !A & !B & F
     # !A & B & E
     # D & A);

X4 = (D & A & B
     # !A & E);

X5 = (D & A & B);

X6 = (A & !B & E
     # !C & !A & E);

X7 = (C & !A & F);

X8 = (D & A & E & F
     # A & B
     # !A & !E
     # !D & !A);

X9 = (D & !A
     # D & !B);

X10 = (C & D & !A
     # A & !B & E);

Reverse-Polarity Eqns:

!X1 = (A & !B
     # D
     # !C);

!X1A = (A & !B
     # D
     # !C);

!X2 = (!C & !D & A & B
     # !B & !E & !F
     # !A & !E & !F);

!X2A = (!C & !D & A & B
     # !B & !E & !F
     # !A & !E & !F);

!X3 = (!C & !A & !B
     # !A & B & !E
     # !D & A
     # !A & !B & !F);

!X3A = (!C & !A & !B
     # !A & B & !E
     # !D & A
     # !A & !B & !F);

!X4 = (A & !B
     # !D & A
     # !A & !E);

!X5 = (!A
     # !D
     # !B);

!X6 = (A & B
     # C & !A
     # !E);

!X7 = (A
     # !C
     # !F);

!X8 = (A & !B & !F
     # D & !A & E
     # A & !B & !E
     # !D & A & !B);

!X9 = (!D
     # A & B);

!X10 = (A & B
     # !D & !A
     # !C & !A
     # A & !E);
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4.6.4 Truth Tables
ABEL provides one more way to specify combinational logic functions—

the truth table, with the general format shown in Table 4-16. The keyword
truth_table introduces a truth table. The input-list and output-list give the
names of the input signals and the outputs that they affect. Each of these lists is
either a single signal name or a set; sets are described fully in Section 4.6.5. Fol-
lowing the truth-table introduction are a series of statements, each of which
specifies an input value and a required output value using the “->” operator. For
example, the truth table for an inverter is shown below:

truth_table (X -> NOTX)
             0 -> 1;
             1 -> 0;

The list of input values does not need to be complete; only the on-set of the
function needs to be specified unless don’t-care processing is enabled (see
Section 4.6.6). Table 4-17 shows how the prime-number detector function
described on page 213 can be specified using an ABEL program. For conve-
nience, the identifier NUM is defined as a synonym for the set of four input bits
[N3,N2,N1,N0], allowing a 4-bit input value to be written as a decimal integer. 

truth_table (input-list -> output-list)

            input-value -> output-value;

            ...

            input-value -> output-value;

Ta b l e  4 - 1 6
Structure of an ABEL 
truth table.

Ta b l e  4 - 1 7 An ABEL program for the prime number detector.

module PrimeDet 
title '4-Bit Prime Number Detector' 

" Input and output pins 
N0, N1, N2, N3                   pin; 
F                                pin istype 'com';

" Definition
NUM = [N3,N2,N1,N0];

truth_table (NUM -> F)
               1 -> 1;
               2 -> 1;
               3 -> 1;
               5 -> 1;
               7 -> 1;
              11 -> 1;
              13 -> 1;
end PrimeDet

truth table
truth_table

input-list
output-list

unclocked truth-table 
operator, ->
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Both truth tables and equations can be used within the same ABEL
program. The equations keyword introduces a sequence of equations, while
the truth_table keyword introduces a single truth table.

4.6.5 Ranges, Sets, and Relations
Most digital systems include buses, registers, and other circuits that handle a
group of two or more signals in an identical fashion. ABEL provides several
shortcuts for conveniently defining and using such signals.

The first shortcut is for naming similar, numbered signals. As shown in the
pin definitions in Table 4-18, a range of signal names can be defined by stating
the first and last names in the range, separated by “..”. For example, writing
“N3..N0” is the same as writing “N3,N2,N1,N0.” Notice in the table that the
range can be ascending or descending.

Next, we need a facility for writing equations more compactly when a
group of signals are all handled identically, in order to reduce the chance of
errors and inconsistencies. An ABEL set is simply a defined collection of signals
that is handled as a unit. When a logical operation such as AND, OR, or assign-
ment is applied to a set, it is applied to each element of the set. 

Each set is defined at the beginning of the program by associating a
set name with a bracketed list of the set elements (e.g., N=[N3,N2,N1,N0] in
Table 4-18). The set element list may use shortcut notation (YOUT=[Y1..Y4]),
but the element names need not be similar or have any correspondence with the
set name (COMP=[EQ,GE]). Set elements can also be constants (GT=[0,1]). In
any case, the number and order of elements in a set are significant, as we’ll see.

Most of ABEL’s operators, can be applied to sets. When an operation is
applied to two or more sets, all of the sets must have the same number of ele-
ments, and the operation is applied individually to set elements in like positions,
regardless of their names or numbers. Thus, the equation “YOUT = N & M” is
equivalent to four equations:

Y1 = N3 & M3; 
Y2 = N2 & M2; 
Y3 = N1 & M1; 
Y4 = N0 & M0; 

When an operation includes both set and nonset variables, the nonset vari-
ables are combined individually with set elements in each position. Thus, the
equation “ZOUT = (SEL & N) # (!SEL & M)” is equivalent to four equations of the
form “Zi = (SEL & Ni) # (!SEL & Mi)” for i equal 0 to 3.

Another important feature is ABEL’s ability to convert “relations” into
logic expressions. A relation is a pair of operands combined with one of the
relational operators listed in Table 4-19. The compiler converts a relation into a
logic expression that is 1 if and only if the relation is true. 

The operands in a relation are treated as unsigned integers, and either oper-
and may be an integer or a set. If the operand is a set, it is treated as an unsigned

range

set

relation
relational operator
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binary integer with the leftmost variable representing the most significant bit. By
default, numbers in ABEL programs are assumed to be base-10. Hexadecimal
and binary numbers are denoted by a prefix of “^h” or “^b,” respectively, as
shown in the last equation in Table 4-18.

ABEL sets and relations allow a lot of functionality to be expressed in very
few lines of code. For example, the equations in Table 4-18 generate minimized
equations with 69 product terms, as shown in the summary in Table 4-20.

Ta b l e  4 - 1 8  Examples of ABEL ranges, sets, and relations.

module SetOps 
title 'Set Operation Examples' 

" Input and output pins 
N3..N0, M3..M0, SEL                           pin; 
Y1..Y4, Z0..Z3, EQ, GE, GTR, LTH, UNLUCKY     pin istype 'com';

" Definitions
N    = [N3,N2,N1,N0];
M    = [M3,M2,M1,M0];
YOUT = [Y1..Y4];
ZOUT = [Z3..Z0];

COMP = [EQ,GE];
GT   = [ 0, 1];
LT   = [ 0, 0];

equations

YOUT = N & M;
ZOUT = (SEL & N) # (!SEL & M);
EQ = (N == M);
GE = (N >= M);
GTR = (COMP == GT);
LTH = (COMP == LT);
UNLUCKY = (N == 13) # (M == ^hD) # ((N + M) == ^b1101);

end SetOps

Symbol Relation Ta b le  4 - 1 9
Relational operators 
in ABEL.== equal

!= not equal

< less than

<= less than or equal

> greater than

>= greater than or equal

^h hexadecimal prefix
^b binary prefix
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*4.6.6 Don’t-Care Inputs
Some versions of the ABEL compiler have a limited ability to handle don’t-care
inputs. As mentioned previously, ABEL equations specify input combinations
that belong to the on-set of a logic function; the remaining combinations are
assumed to belong to the off-set. If some input combinations can instead be
assigned to the d-set, then the program may be able to use these don’t-care inputs
to do a better job of minimization.

The ABEL language defines two mechanisms for assigning input combi-
nations to the d-set. In order to use either mechanism, you must include the
compiler directive @DCSET in your program, or include “dc” in the istype prop-
erty list of the outputs for which you want don’t-cares to be considered.

The first mechanism is the don’t-care unclocked assignment operator, ?=.
This operator is used instead of = in equations to indicate that input combina-
tions matching the right-hand side should be put into the d-set instead of the
on-set. Although this operator is documented in the ABEL compiler that I use,
unfortunately it is broken, so I’m not going to talk about it anymore.

The second mechanism is the truth table. When don’t-care processing is
enabled, any input combinations that are not explicitly listed in the truth table are
put into the d-set. Thus, the prime BCD-digit detector described on page 230 can
be specified in ABEL as shown in Table 4-21. A don’t-care value is implied for
input combinations 10–15 because these combinations do not appear in the truth
table and the @DCSET directive is in effect.

Ta b l e  4 - 2 0 Synthesized equations summary produced 
by ABEL for program in Table 4-18.

 P-Terms   Fan-in  Fan-out  Type  Name (attributes)
---------  ------  -------  ----  -----------------
   1/2        2        1    Pin   Y1 
   1/2        2        1    Pin   Y2 
   1/2        2        1    Pin   Y3 
   1/2        2        1    Pin   Y4 
   2/2        3        1    Pin   Z0 
   2/2        3        1    Pin   Z1 
   2/2        3        1    Pin   Z2 
   2/2        3        1    Pin   Z3 
  16/8        8        1    Pin   EQ 
  23/15       8        1    Pin   GE 
   1/2        2        1    Pin   GTR 
   1/2        2        1    Pin   LTH 
  16/19       8        1    Pin   UNLUCKY 
=========
  69/62         Best P-Term Total: 53
                       Total Pins: 22
                      Total Nodes: 0
            Average P-Term/Output: 4

@DCSET

dc

?= don’t-care unclocked 
assignment operator
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It’s also possible to specify don’t-care combinations explicitly, as shown in
the second truth table. As introduced at the very beginning of this section, ABEL
recognizes .X. as a special one-bit constant whose value is “don’t-care.” In
Table 4-21, the identifier “X” has been equated to this constant just to make it
easier to type don’t-cares in the truth table. The minimized equations resulting
from Table 4-21 are shown in Table 4-22. Notice that the two equations for F are
not equal; the compiler has selected different values for the don’t-cares.

module DontCare 
title 'Dont Care Examples' 
@DCSET

" Input and output pins 
N3..N0, A, B                   pin; 
F, Y                           pin istype 'com';

NUM = [N3..N0];
X = .X.;

truth_table (NUM->F)
               0->0;
               1->1;
               2->1;
               3->1;
               4->0;
               5->1;
               6->0;
               7->1;
               8->0;
               9->0;

truth_table ([A,B]->Y)
             [0,0]->0;
             [0,1]->X;
             [1,0]->X;
             [1,1]->1;

end DontCare

Ta b l e  4 - 2 1
ABEL program using 
don’t-cares.

Equations:
F = (!N2 & N1
     # !N3 & N0);
Y = (B);

Reverse-Polarity Equations:
!F = (N2 & !N0
     # N3
     # !N1 & !N0);
!Y = (!B);

Ta b l e  4 - 2 2
Minimized equations 
derived from 
Table 4-21.
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4.6.7 Test Vectors
ABEL programs may contain optional test vectors, as we showed in Table 4-11
on page 249. The general format of test vectors is very similar to a truth table
and is shown in Table 4-23. The keyword test_vectors introduces a truth
table. The input-list and output-list give the names of the input signals and the
outputs that they affect. Each of these lists is either a single signal name or a set.
Following the test-vector introduction are a series of statements, each of which
specifies an input value and an expected output value using the “->” operator. 

ABEL test vectors have two main uses and purposes:

1. After the ABEL compiler translates the program into “fuse pattern” for a
particular device, it simulates the operation of the final programmed device
by applying the test-vector inputs to a software model of the device and
comparing its outputs with the corresponding test-vector outputs. The
designer may specify a series of test vectors in order to double-check that
device will behave as expected for some or all input combinations.

2. After a PLD is physically programmed, the programming unit applies the
test-vector inputs to the physical device and compares the device outputs
with the corresponding test-vector outputs. This is done to check for
correct device programming and operation.

Unfortunately, ABEL test vectors seldom do a very good job at either one of
these tasks, as we’ll explain.

The test vectors from Table 4-11 are repeated in Table 4-24, except that for
readability we’ve assumed that the identifier X has been equated to the don’t-care
constant .X., and we’ve added comments to number the test vectors.

Table 4-24 actually appears to be a pretty good set of test vectors. From the
designer’s point of view, these vectors fully cover the expected operation of the
alarm circuit, as itemized vector-by-vector below: 

1. If PANIC is 1, then the alarm output (F) should be on regardless of the other
input values. All of the remaining vectors cover cases where PANIC is 0.

2. If the alarm is not enabled, then the output should be off.

3. If the alarm is enabled but we’re exiting, then the output should be off.

4-6. If the alarm is enabled and we’re not exiting, then the output should be on
if any of the sensor signals WINDOW, DOOR, or GARAGE is 0.

7. If the alarm is enabled, we’re not exiting, and all of the sensor signals are
1, then the output should be off. 

test_vectors (input-list -> output-list)

             input-value -> output-value;

             ...

             input-value -> output-value;

Ta b l e  4 - 2 3
Structure of ABEL 
test vectors.

test_vectors

input-list
output-list
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The problem is that ABEL doesn’t handle don’t-cares in test-vector inputs
the way that it should. For example, by all rights, test vector 1 should test 32 dis-
tinct input combinations corresponding to all 32 possible combinations of don’t-
care inputs ENABLEA, EXITING, WINDOW, DOOR, and GARAGE. But it doesn’t. In
this situation, the ABEL compiler interprets “don’t care” as “the user doesn’t
care what input value I use,” and it just assigns 0 to all don’t-care inputs in a test
vector. In this example, you could have erroneously written the output equation
as “F = PANIC & !ENABLEA # ENABLEA & ...”; the test vectors would still
pass even though the panic button would work only when the system is disabled. 

The second use of test vectors is in physical device testing. Most physical
defects in logic devices can be detected using the single stuck-at fault model,
which assumes that any physical defect is equivalent to having a single gate
input or output stuck at a logic 0 or 1 value. Just putting together a set of test
vectors that seems to exercise a circuit’s functional specifications, as we did in
Table 4-24, doesn’t guarantee that all single stuck-at faults can be detected. The
test vectors have to be chosen so that every possible stuck-at fault causes an
incorrect value at the circuit output for some test-vector input combination. 

Table 4-25 shows a complete set of test vectors for the alarm circuit when
it is realized as a two-level sum-of-products circuit. The first four vectors check
for stuck-at-1 faults on the OR gate, and the last three check for stuck-at-0 faults
on the AND gates; it turns out that this is sufficient to detect all single stuck-at
faults. If you know something about fault testing you can generate test vectors
for small circuits by hand (as I did in this example), but most designers use auto-
mated third-party tools to create high-quality test vectors for their PLD designs.

test_vectors
([PANIC,ENABLEA,EXITING,WINDOW,DOOR,GARAGE] -> [ALARM])
[     1,      X,      X,     X,   X,     X] -> [    1]; “  1
[     0,      0,      X,     X,   X,     X] -> [    0]; “  2
[     0,      1,      1,     X,   X,     X] -> [    0]; “  3
[     0,      1,      0,     0,   X,     X] -> [    1]; “  4
[     0,      1,      0,     X,   0,     X] -> [    1]; “  5
[     0,      1,      0,     X,   X,     0] -> [    1]; “  6
[     0,      1,      0,     1,   1,     1] -> [    0]; “  7

Ta b l e  4 - 2 4
Test vectors for the 
alarm circuit program 
in Table 4-11.

test_vectors
([PANIC,ENABLEA,EXITING,WINDOW,DOOR,GARAGE] -> [ALARM])
[     1,      0,      1,     1,   1,     1] -> [    1]; “  1
[     0,      1,      0,     0,   1,     1] -> [    1]; “  2
[     0,      1,      0,     1,   0,     1] -> [    1]; “  3
[     0,      1,      0,     1,   1,     0] -> [    1]; “  4
[     0,      0,      0,     0,   0,     0] -> [    0]; “  5
[     0,      1,      1,     0,   0,     0] -> [    0]; “  6
[     0,      1,      0,     1,   1,     1] -> [    0]; “  7

Ta b l e  4 - 2 5
Single-stuck-at-fault 
test vectors for the 
minimal sum-of-
products realization 
of the alarm circuit.

single stuck-at fault 
model


