
Section 5.4 Decoders 323

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

5.4.6 Decoders in ABEL and PLDs
Nothing in logic design is much easier than writing the PLD equations for a
decoder. Since the logic expression for each output is typically just a single prod-
uct term, decoders are very easily targeted to PLDs and use few product-term
resources.

For example, Table 5-8 is an ABEL program for a 74x138-like 3-to-8
binary decoder as realized in a PAL16L8. Note that some of the input pins and
all of the output pins have active-low names (“_L” suffix) in the pin declarations,
corresponding to the logic diagram in Figure 5-37 on page 320. However, the
program also defines a corresponding active-high name for each signal so that
the equations can all be written “naturally,” in terms of active-high signals. An
alternate way to achieve the same effect is described in the box on page 325.

Ta b l e 5 - 8 An ABEL program for a 74x138-like 3-to-8 binary decoder.

module Z74X138
title '74x138 Decoder PLD
J. Wakerly, Stanford University'
Z74X138 device 'P16L8';

" Input and output pins
A, B, C, G2A_L, G2B_L, G1 pin 1, 2, 3, 4, 5, 6;
Y0_L, Y1_L, Y2_L, Y3_L, Y4_L, Y5_L, Y6_L, Y7_L pin 19..12 istype 'com';

" Active-high signal names for readability
G2A = !G2A_L;
G2B = !G2B_L;
Y0 = !Y0_L;
Y1 = !Y1_L;
Y2 = !Y2_L;
Y3 = !Y3_L;
Y4 = !Y4_L;
Y5 = !Y5_L;
Y6 = !Y6_L;
Y7 = !Y7_L;

" Constant expression
ENB = G1 & G2A & G2B;

equations
Y0 = ENB & !C & !B & !A;
Y1 = ENB & !C & !B & A;
Y2 = ENB & !C & B & !A;
Y3 = ENB & !C & B & A;
Y4 = ENB & C & !B & !A;
Y5 = ENB & C & !B & A;
Y6 = ENB & C & B & !A;
Y7 = ENB & C & B & A;

end Z74X138

324 Chapter 5 Combinational Logic Design Practices

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

Also note that the ABEL program defines a constant expression for ENB.
Here, ENB is not an input or output signal, but merely a user-defined name. In the
equations section, the compiler substitutes the expression (G1 & G2A & G2B)
everywhere that “ENB” appears. Assigning the constant expression to a user-
defined name improves this program’s readability and maintainability.

If all you needed was a ’138, you’d be better off using a real ’138 than a
more expensive PLD. However, if you need nonstandard functionality, then the
PLD can usually achieve it much more cheaply and easily than an MSI/SSI-
based solution. For example, if you need the functionality of a ’138 but with
active-high outputs, you need only to change one line in the pin declarations of
Table 5-8:

Y0, Y1, Y2, Y3, Y4, Y5, Y6, Y7 pin 19..12 istype ’com’;

(Also, the original definitions of Y0–Y7 in Table 5-8 must be deleted.) Since each
of the equations required a single product of six variables (including the three in
the ENB expression), each complemented equation requires a sum of six product
terms, less than the seven available in a PAL16L8. If you use a PAL16V8 or
other device with output polarity selection, then the compiler can select non-
inverted output polarity to use only one product term per output.

Ta b l e 5 - 9 Alternate declarations for a 74x138-like 3-to-8 binary decoder.

" Input and output pins
A, B, C, !G2A, !G2B, G1 pin 1, 2, 3, 4, 5, 6;
!Y0, !Y1, !Y2, !Y3, !Y4, !Y5, !Y6, !Y7 pin 19..12 istype 'com';

" Constant expression
ENB = G1 & G2A & G2B;

6

5

4

13

15

14

19

18

17

16

12

N.C.

N.C.

N.C.

N.C.

Y0_L

Y1_L

Y2_L

Y3_L

Y4_L

Y5_L

Y6_L

Y7_L

B

A

C

G2A_L

G2B_L

11

3

2

1

G1

PAL16L8

I1

O1

IO2

IO3

IO4

IO5

IO6

IO7

O8

I2

I3

I4

I5

I6

I7

I8

I9

I10

7

8

9

Z74X138

Figure 5-40
Logic diagram for
the PAL16L8 used as
a 74x138 decoder.

Section 5.4 Decoders 325

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

ACTIVE-LOW
PIN DEFINITIONS

ABEL allows you to use an inversion prefix (!) on signal names in the pin definitions
of a program. When a pin name is defined with the inversion prefix, the compiler
automatically prepends an inversion prefix to the signal name anywhere it appears
elsewhere in the program. If it’s already inverted, this results in a double inversion.

This feature can be used to define a different but consistent convention for
defining active-low inputs and outputs—give each active-low signal an active-high
name, but precede it with the inversion prefix in its pin definition. For the 3-to-8
decoder in Table 5-8, we replace the first part of the program with the code shown
in Table 5-9; the equations section of the program stays exactly the same.

Which convention to use may be a matter of personal taste, but it can also
depend on the capabilities of the CAD tools that you use to draw schematics. Many
tools allow you to automatically create a schematic symbol from a logic block that
is defined by an ABEL program. If the tool allows you to place inversion bubbles on
selected inputs and outputs of the symbol, then the convention in Table 5-9 yields
a symbol with active-high signal names inside the function outline. You can then
specify external bubbles on the active-low signals to obtain a symbol that matches
the conventions described in Section 5.4.2 and shown in Figure 5-41(a).

On the other hand, you may not be able or want to provide inversion bubbles
on CAD-created symbols. In that case, you should use the convention in Table 5-8;
this yields a CAD-created symbol in which the active level is indicated by the signal
name inside the function outline; no external inversion bubbles are needed. This is
shown in Figure 5-41(b). Note that unlike Figure 5-36(a) on page 318, we use a text-
based convention (_L) rather than an overbar on the signal name to indicate active
level. A properly chosen text-based convention provides portability among different
CAD tools.

We’ll somewhat arbitrarily select one convention or the other in each of the
ABEL examples in the rest of this book, just to help you get comfortable with both
approaches.

6

5

4

13

15

14

19

18

17

16

12

11

3

2

1
A

B

C

G2A_L

G2B_L

G1

NC1

NC2

NC3

NC4

7

8

9

Z74X138

Y0_L

Y1_L

Y2_L

Y3_L

Y4_L

Y5_L

Y6_L

Y7_L

(b)

6

5

4

13

15

14

19

18

17

16

12

11

3

2

1
A

B

C

G2A

G2B

G1

NC1

NC2

NC3

NC4

7

8

9

Z74X138

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

(a)

Figure 5-41
Possible CAD-created
symbols for the PLD-
based, 74x138-like
decoder: (a) based on
Table 5-9, after manual
insertion of inversion
bubbles; (b) based on
Table 5-8.

326 Chapter 5 Combinational Logic Design Practices

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

Another easy change is to provide alternate enable inputs that are ORed
with the main enable inputs. To do this, you need only define additional pins and
modify the definition of ENB:

EN1, EN2_L pin 7, 8;
...
EN2 = !EN2_L;
...
ENB = G1 & G2A & G2B # EN1 # EN2;

This change expands the number of product terms per output to three, each
having a form similar to

Y0 = G1 & G2A & G2B & !C & !B &!A
 # EN1 & !C & !B & !A
 # EN2 & !C & !B & !A;

(Remember that the PAL16L8 has a fixed inverter and the PAL16V8 has a
selectable inverter between the AND-OR array and the output of the PLD, so the
actual output is active low as desired.)

If you add the extra enables to the version of the program with active-high
outputs, then the PLD must realize the complement of the sum-of-products
expression above. It’s not immediately obvious how many product terms this
expression will have, and whether it will fit in a PAL16L8, but we can use the
ABEL compiler to get the answer for us:

!Y0 = C # B # A # !G2B & !EN1 & !EN2
 # !G2A & !EN1 & !EN2
 # !G1 & !EN1 & !EN2;

The expression has a total of six product terms, so it fits in a PAL16L8.
As a final tweak, we can add an input to dynamically control whether the

output is active high or active low, and modify all of the equations as follows:

POL pin 9;
...
Y0 = POL $ (ENB & !C & !B & !A);
Y1 = POL $ (ENB & !C & !B & A);
...
Y7 = POL $ (ENB & C & B & A);

As a result of the XOR operation, the number of product terms needed per output
increases to 9, in either output-pin polarity. Thus, even a PAL16V8 cannot
implement the function as written.

The function can still be realized if we create a helper output to reduce the
product term explosion. As shown in Table 5-10, we allocate an output pin for

helper output

Section 5.4 Decoders 327

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

the ENB expression (losing the Y7_L output) , and move the ENB equation into the
equations section of the program. This reduces the product-term requirement
to five in either polarity.

Besides sacrificing a pin for the helper output, this realization has the
disadvantage of being slower. Any changes in the inputs to the helper expression
must propagate through the PLD twice before reaching the final output. This is
called two-pass logic. Many PLD and FPGA synthesis tools can automatically
generate logic with two or more passes if a required expression cannot be
realized in just one pass through the logic array.

Decoders can be customized in other ways. A common customization is
for a single output to decode more than one input combination. For example,
suppose you needed to generate a set of enable signals according to Table 5-11.
A 74x138 MSI decoder can be augmented as shown in Figure 5-42 to perform
the required function. This approach, while potentially less expensive than a
PLD, has the disadvantages that it requires extra components and delay to create
the required outputs, and it is not easily modified.

Ta b l e 5 - 1 0 ABEL program fragment showing two-pass logic.

...
" Output pins
Y0_L, Y1_L, Y2_L, Y3_L pin 19, 18, 17, 16 istype 'com';
Y4_L, Y5_L, Y6_L, ENB pin 15, 14, 13, 12 istype 'com';

equations
ENB = G1 & G2A & G2B # EN1 # EN2;
Y0 = POL $ (ENB & !C & !B & !A);
...

CS_L RD_L A2 A1 A0 Output(s) to Assert Ta b l e 5 - 1 1
Truth table for a
customized decod-
er function.

1 x x x x none
x 1 x x x none
0 0 0 0 0 BILL_L, MARY_L

0 0 0 0 1 MARY_L, KATE_L

0 0 0 1 0 JOAN_L

0 0 0 1 1 PAUL_L

0 0 1 0 0 ANNA_L

0 0 1 0 1 FRED_L

0 0 1 1 0 DAVE_L

0 0 1 1 1 KATE_L

helper output

two-pass logic

328 Chapter 5 Combinational Logic Design Practices

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

A PLD solution to the same problem is shown in Table 5-12. Note that this
program uses the pin active-low pin-naming convention described in the box on
page 325 (you should be comfortable with either convention). Each of the last
six equations uses a single AND gate in the PLD. The ABEL compiler will also
minimize the MARY equation to use just one AND gate. Active-high output
signals could be obtained just by changing two lines in the declaration section:

BILL, MARY, JOAN, PAUL pin 19, 18, 17, 16 istype ’com’;
ANNA, FRED, DAVE, KATE pin 15, 14, 13, 12 istype ’com’;

Ta b l e 5 - 1 2 ABEL equations for a customized decoder.

module CUSTMDEC
title 'Customized Decoder PLD
J. Wakerly, Stanford University'
CUSTMDEC device ’P16L8’;

" Input pins
!CS, !RD, A0, A1, A2 pin 1, 2, 3, 4, 5;
" Output pins
!BILL, !MARY, !JOAN, !PAUL pin 19, 18, 17, 16 istype 'com';
!ANNA, !FRED, !DAVE, !KATE pin 15, 14, 13, 12 istype 'com';

equations
BILL = CS & RD & (!A2 & !A1 & !A0);
MARY = CS & RD & (!A2 & !A1 & !A0 # !A2 & !A1 & A0);
KATE = CS & RD & (!A2 & !A1 & A0 # A2 & A1 & A0);
JOAN = CS & RD & (!A2 & A1 & !A0);
PAUL = CS & RD & (!A2 & A1 & A0);
ANNA = CS & RD & (A2 & !A1 & !A0);
FRED = CS & RD & (A2 & !A1 & A0);
DAVE = CS & RD & (A2 & A1 & !A0);

end CUSTMDEC

74x138

G2A

G1

G2B

Y0

Y1

Y2

Y3

6
1

2

15
3

14

13

7

4

5

B

A

C

Y4

Y5

Y6

Y7

1

12

11

10

9
2

3

BILL_L

MARY_L

JOAN_L

PAUL_L

ANNA_L

FRED_L

DAVE_L

KATE_L

A0

A1

A2

CS_L

RD_L

+5V

U1

R

U2

74x08

4

5
6

U2

74x08

Figure 5-42
Customized
decoder circuit.

Section 5.4 Decoders 329

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

Another way of writing the equations is shown in Table 5-13. In most
applications, this style is more clear, especially if the select inputs have numeric
significance.

5.4.7 Decoders in VHDL
There are several ways to approach the design of decoders in VHDL. The most
primitive approach would be to write a structural equivalent of a decoder logic
circuit, as Table 5-14 does for the 2-to-4 binary decoder of Figure 5-32 on
page 314. Of course, this mechanical conversion of an existing design into the
equivalent of a netlist defeats the purpose of using VHDL in the first place.

Instead, we would like to write a program that uses VHDL to make our
decoder design more understandable and maintainable. Table 5-15 shows one
approach to writing code for a 3-to-8 binary decoder equivalent to the 74x138,
using the dataflow style of VHDL. The address inputs A(2 downto 0) and the
active-low decoded outputs Y_L(0 to 7) are declared using vectors to improve
readability. A select statement enumerates the eight decoding cases and
assigns the appropriate active-low output pattern to an 8-bit internal signal
Y_L_i. This value is assigned to the actual circuit output Y_L only if all of the
enable inputs are asserted.

This design is a good start, and it works, but it does have a potential pitfall.
The adjustments that handle the fact that two inputs and all the outputs are
active-low happen to be buried in the final assignment statement. While it’s true
that most VHDL programs are written almost entirely with active-high signals,
if we’re defining a device with active-low external pins, we really should handle
them in a more systematic and easily maintainable way.

Ta b l e 5 - 1 3 Equivalent ABEL equations for a customized decoder.

ADDR = [A2,A1,A0];

equations
BILL = CS & RD & (ADDR == 0);
MARY = CS & RD & (ADDR == 0) # (ADDR == 1);
KATE = CS & RD & (ADDR == 1) # (ADDR == 7);
JOAN = CS & RD & (ADDR == 2);
PAUL = CS & RD & (ADDR == 3);
ANNA = CS & RD & (ADDR == 4);
FRED = CS & RD & (ADDR == 5);
DAVE = CS & RD & (ADDR == 6);

