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Preface
ABEL (Advanced Boolean Expression Language) was introduced by
Data I/O Corporation in 1984 and is now used by tens of thousands of

digital circuit designers worldwide. The ABEL language was designed
to allow small to medium-sized circuits (ranging in size from a few logic

gates up to circuits composed of many thousands of gates) to be
described and implemented in programmable logic devices (PLDs).

PLDs have become extremely common in modern digital systems, and
the increasing popularity of these devices has led to an explosion ofnew
device architectures. In addition, the densities of the newest devices

have made it impractical to attempt a complex PLD-based design
without design entry software. ABEL allows you to quickly and effi-

ciently create large designs and to use one design description method
for virtually all PLDs available.

Digital Design Using ABEL leads you through the basics of HDL-based
digital design and provides dozens ofexamples ofhowABEL can be used
for digital applications. One primary reason for ABEL's popularity is its

simplicity. While more complex and universal hardware description

languages (such as VHDL and Verilog) may become more widely used
design languages at some point in the future, these languages are

primarily intended for circuit modeling, rather than for general-purpose
logic design. ABEL, on the other hand, was designed specifically for the
purpose of describing digital circuits for implementation in program-
mable logic. This specific purpose has made it possible to keep the
language relatively simple and easy to use and makes ABEL a good
language for learning concepts of HDL-based design.

VII



viii Preface

The book begins with a discussion of the fundamentals of digital design,

with special emphasis placed on techniques that are appropriate for

users of ABEL. Chapters 1 through 4 cover topics such as Boolean
algebra, logic minimization, and sequential circuit design and help the

reader to better understand how traditional digital design techniques
are applied, as well as shedding light on the processing and optimiza-

tions that are performed by the ABEL design software. Chapter 5

introduces the ABEL language and shows by example how the various

forms of description (equations, truth tables, and state diagrams) are

used to describe circuits at a high level.

In the second half of the book, beginning with Chapter 6, we provide

examples of logic circuits and complete designs that .have been de-

scribed using the ABEL language. These chapters describe a variety of

common digital circuits, which range from simple decoders and com-
parators to more complex sequential circuits such as counters and shift

registers. You can use these common circuits as building blocks for

larger applications. Armed with the information presented in these

chapters, it will be possible for you to describe circuits ranging from
simple combinational functions to complex state machine applications

consisting of hundreds, or even thousands, of equivalent TTL gates. In

the final chapter we describe a complex application that has been
developed using ABEL.

AppendixA serves as a complete ABEL language reference and includes

a wealth of information useful for new ABEL users. This appendix also

contains additional information (including information not found in the

standard ABEL documentation) useful to those who already have some
experience with the ABEL language.

The software included with Digital Design UsingABEL is a device-limited

subset ofABEL version 5.0. The software includes all features necessary

to enter, compile, simulate, and fit designs using a variety of widely

available programmable logic devices. These devices range from simple

PAL-type devices like the 16L8, 16R4, 16R6, and 16R8 to more complex
PLDs with configurable macrocell logic, including the PEEL 18CV8,

Altera EP320 EPLD and AMD Mach 215 complex PLD. With this

software it is possible for you to create, optimize, and simulate logic

circuits that would be difficult or impossible to optimize using tradi-

tional methods of design.

Digital Design UsingABEL incorporates a great deal of material from an
earlier book by the authors, Practical Design Using Programmable Logic

(Prentice Hall, 199 1 ) . Readers who are interested in learning more about

programmable logic devices, their history, architectures, and applica-
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tions, are encouraged to consult Practical Design Using Programmable
Logic.

This book would not have been possible without the support of many
people. We would especially like to thank our colleagues at Data I/O
Corporation and the many ABEL users who have contributed, through
their questions and comments, to the information presented here. We
would also like to thank Mark Sasten for his careful review of the

manuscript.

This book would not be complete without the ABEL software. Bob
LaTurner burned the midnight oil to create the customized version of

ABEL included with the book, and his efforts are greatly appreciated.

Special thanks also go to Karen Gettman at Prentice Hall for her support

and encouragement.

David Pellerin

Michael Holley
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Introduction
ABEL (Advanced Boolean Expression Language) is a design language
and set of supporting software programs that allow complex logic

designs to be entered, compiled, optimized, simulated, and then imple-

mented in programmable logic. ABEL is a device-independent language,

meaning that a design written in ABEL does not have to explicitly state

what device or technology will be used for implementation. The language
does, however, include many features and constructs that give you
control over a variety of device-specific circuit elements. In this book we
concentrate on the device-independent aspects of ABEL and point out
device-specific features or design requirements as needed.

1 .1 DESIGN ENTRY USING ABEL

ABEL provides three different design representations that you can
combine as needed to completely specify a design. These repre-

sentations are equations, truth tables, and state diagrams. ABEL also

provides a test vector language that can be used to describe circuit

stimulus and expected outputs for simulation. A sample ABEL source
file is shown in Figure 1.1. This source file describes an eight-state

counter using equations. (This and other counters are described in

Chapter 7.)

Equations are most useful when the design to be described has some
underlying pattern or regularity. Multiplexers, shift registers, and
counters are all examples of circuits that have these attributes. ABEL

1
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module count256
title '8-bit counter'
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1

II 8-bit counter with hold and synchronous reset. //
// Appropriate for most PLD architectures. //

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1

clock, reset, hold pin;
q7..q0 pin istype 'reg';

Count = [q7..q0];

equations

Count. elk = clock;

Count := Ihold & (Count. fb + 1) & ! reset
# hold & Count. fb & ! reset;

test_vectors

(

[clock , reset ,hold i->c:oun

[ .c. , 1 , .X. -> 0;

[ .c. r ,
-> 1;

[ .c. , ,
-> 2;

[ .c. r r
-> 3;

[ .c. , ,
-> 4;

[ .c. , , 1 -> 4;

[ .c. , - 1 .
-> 4;

[ .c. ,
-> 5;

[ .c. ,
-> 6;

[ .c. -> 7;

[ >c. ,
-> 8;

[ .c. , .
-> 9;

[ .c.
,

o
,

o :
-> 10;

end

Figure 1.1 ABEL source file for 8-bit counter

raises the level of design abstraction for circuits such as these by
incorporating high-level equation features such as sets, arithmetic

operators, and relational operators. These features allow far more
abstract forms of expression than are possible using simple sum-of-
products Boolean equations.

Truth tables are most useful for designs that have no underlying pattern

or order. A typical example of such a circuit is a decoder for a seven-

segment display such as the one shown in Figure 1.2. (This design is

described in more detail in Chapter 5.) The truth table is a natural way
to describe partially specified functions in which there are don't-care

conditions. Truth tables are also a convenient way in which to describe

the behavior of sequential circuits that contain a large number of similar
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module BCD7
title 'BCD to 7 -segment display driver'
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1

II Seven- segment display driver with active-low //

// outputs. Segments: -a- //

// f| |b //

// -g- //

// e| |c //

// -d- //

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1

D3..D0 pin; "BCD input
a,b,c,d,e,£,g pin istype 'dc,com'; "Segment outputs
OE pin; "Output enable

BCD = [D3..D0];
LED = [a,b,c,d,e,f ,g]

;

ON,OFF = 0,1; 'Inverted sense

equations

LED.oe = JOE; 'Define output enable

truth_table ( BCD-

>

[ a , b , C , d , e , f , g ])
->

[ OFF, OFF, OFF, OFF, OFF, OFF, ON] ;

1 ->
[ ON, OFF, OFF, ON, ON, ON, ON] ;

2 ->
: OFF, OFF, ON, OFF, OFF, ON, OFF] ;

3 ->
: OFF, OFF, OFF, OFF, ON, ON, OFF] ;

4 -> ON, OFF, OFF, ON, ON, OFF, OFF] ;

5 ->
: OFF, ON, OFF, OFF, ON, OFF, OFF] ;

6 ->
. OFF, ON, OFF, OFF, OFF, OFF, OFF] ;

7 -> OFF, OFF, OFF, ON, ON, ON, ON] ;

8 -> OFF, OFF, OFF, OFF, OFF, OFF, OFF] ;

9 -> OFF, OFF, OFF, OFF, ON, OFF, OFF] ;

test_vectors
( [OE,lBCD

1

->
1

a , b , C , d , e , f , g ])

[ o,
1

->
1
OFF, OFF, OFF, OFF, OFF, OFF, ON];

[ o. 1 [
->

|
ON, OFF, OFF, ON, ON, ON, ON];

[ o. 2 l->l OFF, OFF, ON, OFF, OFF, ON, OFF] ;

[ o. 3
I

->
1
OFF, OFF, OFF, OFF, ON, ON, OFF] ;

[ 0, 4
I

->
1

ON, OFF, OFF, ON, ON, OFF, OFF] ;

t o. 5
1 ->l OFF, ON, OFF, OFF, ON, OFF, OFF] ;

[ o. 6 ->
1
OFF, ON, OFF, OFF, OFF, OFF, OFF] ;

[ o. 7 ->
1
OFF, OFF, OFF, ON, ON, ON, ON] ;

[ o, 8 ->
|
OFF, OFF, OFF, OFF, OFF, OFF, OFF] ;

[ o. 9 ->
|
OFF, OFF, OFF, OFF, ON, OFF, OFF] ;

[ 1, 5 ->
1

end

Figure 1.2 Seven-segment display driver design file
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state_diagram BCD

State Zero:

State One:

State Two:

State Three:

State Four:

State Five:

State Six:

State Seven:

State Eight

:

State Nine:

C4 = 0;

If Cin Then One Else Zero;

C4 = 0;

If Cin Then Three Else Two;

C4 = 0;

If Cin Then Five Else Four;

C4 = 0;

If Cin Then Seven Else Six;

C4 = 0;

If Cin Then Nine Else Eight;

C4 1;

If Cin Then One Else Zero;

C4 = 1;

If Cin Then Three Else Two;

C4 = 1;

If Cin Then Five Else Four;

C4 = 1;

If Cin Then Seven Else Six;

C4 = 1;

If Cin Then Nine Else Eight;

Figure 1.3 ABEL state diagram language

state transitions. Truth tables for these applications will be explored in

Chapter 11.

ABEL's state diagram language can be used to describe the behavior of

finite state machines (FSMs). The choice of whether to use state

diagrams, equations, or truth tables for descriptions of these circuits is

largely a matter of personal taste. State diagrams tend to be more
lengthy than equivalent truth table descriptions, but are usually more
readable if there are a large number of states. Figure 1 .3 is an excerpt

from a serial BCD (binary coded decimal) decoder presented in Chapter
10.
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Simulate ABEL 5.03e Date: Fri Sep 10 18:10:27 1993

Fuse file: 'fibl.ttl' Vector file: 'fibl.tmv' Part: 'PLA'

c c
1 1 A A A A A A A A B B B B B B B B S S S S S S S S

k r 7 6 5 4 3 2 1 7 6 5 4 3 2 1 7 6 5 4 3 2 1

voooi C 1 L L L L L L L L L L L L L L L L L L L L L L L L

V0002 c L L L L L L L H L L L L L L L L L L L L L L L H

V0003 c L L L L L L L L L L L L L L L H L L L L L L L H

V0004 c L L L L L L L H L L L L L L L H L L L L L L H L

V0005 c L L L L L L L H L L L L L L H L L L L L L L H H

V0006 c L L L L L L H L L L L L L L H H L L L L L H L H

V0007 c L L L L L L H H L L L L L H L H L L L L H L L L

V0008 c L L L L L H L H L L L L H L L L L L L L H H L H

V0009 c L L L L H L L L L L L L H H L H L L L H L H L H

V0010 c L L L L H H L H L L L H L H L H L L H L L L H L

voon c L L L H L H L H L L H L L L H L L L H H L H H H

V0012 c L L H L L L H L L L H H L H H H L H L H H L L H
V0013 c L L H H L H H H L H L H H L L H H L L H L L L L

V0014 c L H L H H L L H H L L H L L L L H H H L H L L H

V0015 c H L L H L L L L H H H L H L L H L H H H H L L H

V0016 c L L L L L L L L L L L L L L L L L L L L L L L L

V0017 c L L L L L L L L L L L L L L L L L L L L L L L L

V0018 c L L L L L L L H L L L L L L L L L L L L L L L H

V0019 c L L L L L L L L L L L L L L L H L L L L L L L H

V0020 c L L L L L L L H L L L L L L L H L L L L L L H L

20 out of 20 vectors passed.

Figure 1.4 Sample ABEL simulation results

Test Vectors and Simulation

Test vectors are lists of values representing inputs and corresponding

outputs of the design while under test. In ABEL, test vectors are entered

into source files as an integral part of the design. The ABEL test vector

language is virtually identical to the ABEL truth table language and is

used to describe test stimulus and expected outputs for simulation. The
ABEL logic simulator that is provided with this book can be used to

check the function of a design before moving into the implementation
phase. Figure 1.4 shows a sample output from the ABEL simulator.

Logic Synthesis

Logic synthesis is the process of converting a circuit description into a
form appropriate for hardware implementation and optimizing that

description to create a physical circuit that meets specific constraints.

The constraints that drive logic synthesis may be weighted and may
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include such things as the total circuit size, operating speed, power
usage, or testability. Device-specific synthesis constraints may include
such things as primitive libraries, fan-in and fan-out restrictions, and
device resource constraints. The actual device mapping process may
include logic partitioning, resource allocation, placement and routing,

and other functions.

Logic minimization and multilevel logic optimization are specific logic

synthesis features that are covered in this book. The software provided

with this book includes logic minimization (based on the Espresso
optimization software developed at the University of California at

Berkeley), but does not include the more advanced logic synthesis

features required to implement designs in the most advanced complex
PLDs and FPGAs (field programmable gate arrays).

When high-level design methods are used, effective logic synthesis

techniques are the key to a successful and efficient final circuit. It is

logic synthesis that allows designs to be described at a higher level of

abstraction. Since the goal of logic synthesis is to translate a circuit

representation into a form that meets the specified constraints of the

design, it's important to decide what constraints are most important for

each design.

For most designs being implemented with programmable devices, the

most direct constraints are related to the restricted architectures of the

devices. Automated logic synthesis tools that help to optimize combina-
tional circuits for various global cost and operational constraints have
existed for some time. Automated tools that help with logic synthesis

for constrained architectures, however, have only recently appeared.

These device-specific tools, called Jitters, are the key to efficient imple-

mentation of device-independent designs.

Logic synthesis features available in today's design tools are certainly

useful for that part of the design process in which logic synthesis can
benefit. It's important to realize, however, that the currently available

synthesis tools, no matter how highly automated or tightly integrated,

cannot be used without an awareness of their limitations. Specifically,

you must always be aware of how basic design decisions can affect the

final circuit produced by the tools. Automated logic synthesis tools can
only help to optimize a logic design as you have specified it. They cannot

explore design-level alternatives and make intelligent decisions about

those alternatives. In later chapters, we'll explore some of these design-

level optimizations and alternatives.
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Implementation Considerations

All potential implementation technologies (TTL, PLD, FPGA, or ASIC)
have their strengths and weaknesses, and it is important to keep these

strengths and weaknesses in mind when creating a new design. Since

most ABEL designs are eventually implemented in PLDs and FPGAs,
these are the technologies that we will concentrate on.

PLDs and FPGAs are devices with constrained architectures. While the

specific constraints may differ from one device family to another, the

existence of these constraints leads to limitations in the size and
configuration of the circuits that can be implemented in them. While
automated design tools can help in the conversion of abstract, device-

independent design concepts into working circuits, the designer must
still understand the basic limitations of the target technology. By
showing how the most common constraints effect the implementation
of relatively simple circuits, we'll be able to demonstrate some of the

many design trade-offs that are required for larger designs and other

technologies.
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Combinational
Circuits
A solid understanding of digital logic fundamentals is critical to the

understanding of ABEL and the high-level design capabilities that it

provides. In this chapter, we'll review these fundamentals and examine
how the techniques of digital logic design can be used to help us design

at a higher level. From there we'll move quickly into advanced topics

that are particularly important for ABEL users to understand.

The terminology of digital logic can be confusing. Therefore, a major
goal of this chapter is to define the language of logic design as used in

this book. Even ifyou are a seasoned logic designer, bear with us during
the early parts of this discussion so that we can make sure that we are

speaking a common language. This will be more important in Chapter
3, as we discuss specific logic optimizations that are performed by the

ABEL software, as well as those that must be performed manually.

2.1 LOGIC CIRCUITS AND LOGIC FUNCTIONS

First, we will try at all times to distinguish between real circuits and
purely functional representations of these circuits. In the following

discussions, we will consider a logic function to be an abstract concept,

whereas a logic circuit is a collection of physical circuit elements and
interconnections (typically wires or metal traces). Logic circuits have
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real-world attributes, such as size, speed, and critical timing relation-

ships. This distinction is important to us because, when designing with
ABEL, we are designing at a higher functional level, rather than at a
real implementation level. As we'll see, though, the form of the imple-
mentation and the constraints of the target architecture must fre-

quently be considered even when designing at a high level.

Basic Logic Gates

Logic gates are the basic building blocks of digital logic circuits. A logic

gate may be thought of as a decision-making element. A logic gate has
one or more inputs (each ofwhich can be either true orfalse at any given
time) and a single output that produces either a true or false value based
on the values of the gate inputs. To simplify later discussions, we may
refer to the input and output values of these gates as either logic level

1 (true) or logic level (false). The numerals and 1, when used in this

context, are not numbers; they are logic values.

The inputs and outputs of logic gates are called signals. In an actual

hardware implementation, a signal corresponds to a wire or metal
channel that carries current from one circuit element to another. For
the moment, we can assume that all signals are, at any given time, either

or 1, with no ambiguous signal values. When one or more logic gates

are connected together and the input and output signals are given some
significance (usually indicated by specific signal names), they form a
logic circuit.

In describing the operation of logic gates and logic circuits, it is common
to use a form of representation known as the truth table. A truth table

simply associates combinations of inputs with resulting outputs. Truth
tables can be used to fully specify a logic function (as in the following

examples) or to partially specify it. We'll use fully specified truth tables

to define the basic logic gates. Advanced applications of fully and
partially specified truth tables will be covered later.

The logic gates of most interest to us for Boolean logic manipulations

are the AND, OR, and NOT (inverter) gates. The most common symbolic

representations of these gates is shown in Figure 2.1, along with truth

tables describing their operations.

The AND, OR, and NOT gates are analogous to the words "and," "or,"

and "not" in the English language. We could describe a logic function

using the english language. For example, we might say "The function Y
shall be true when the input signal A is true and the input signal B is

not true, or when the input signal C is true." If we wanted to build a
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Figure 2.1 Basic gates

circuit that implemented this function, it might look like the circuit

shown in Figure 2.2.

This logic circuit is what is known as a combinational logic circuit. This

means that, for any set of input values (as shown in a fully specified

truth table) there is one and only one possible circuit output value,

regardless of the previous state of the circuit. By gluing together an
appropriate collection of ANDs, ORs, and NOTs, it is possible to imple-

ment any combinational logic function.

There are, of course, other types of logic gates. Designers who are used
to constructing circuits out of standard TTL gates or to designing

circuits using "bubble logic" techniques are often more comfortable with
NAND or NOR gates. These gates are widely used because they normally
require less transistor circuitry for implementation than do ANDs and
ORs. For our purposes, however, it is more convenient to consider NAND

Figure 2.2 A simple logic circuit



12 Chapter 2: Combinational Circuits

and NOR gates to be combinations of AND and NOT gates or OR and
NOT gates, respectively.

The Exclusive-OR Gate

In addition to the AND, OR, NAND, NOR, and NOT gates, another type
of gate is of particular interest to us. This is the exclusive-OR gate, or

XOR. The XOR symbol and corresponding truth table are shown in

Figure 2.3.

A B Y

1 1

1 1

1 1

Figure 2.3 Exclusive-OR (XOR) gate

Like NAND and NOR gates, the XOR can be constructed from the basic

AND and OR gates, as shown in Figure 2.4. We'll discuss how the XOR
gate can be used to advantage later in this chapter.

Figure 2.4 Exclusive-OR circuit

The Programmable Logic Array

The programmable logic array, or PLA, is a matrix of NOT, AND, and OR
gates arranged as shown in Figure 2.5. The diagram is simplified by
combining all the inputs to each AND and OR gate into a single line.
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The actual number of signals feeding each gate can be determined by
counting the number of intersections on the line.

Each intersection of a vertical and horizontal line represents a potential

interconnect point. There are two arrays of possible interconnects in a
PLA. The upper array is the AND array, while the lower is the OR array.

The simple PLA shown in the figure has five inputs, each of which is

available to the AND array either directly (its true value) or through an
inverter (its complement). The AND gate outputs are fed into the OR
array, so any AND gate output can be used as an input to any OR gate.

The PLA structure is important to us because it is the basis for nearly

all the programmable devices currently in use, and it is the basic

structure assumed by ABEL and used as an internal design repre-

sentation.
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Chapter 2: Combinational Circuits

2.2 BOOLEAN ALGEBRA

We have seen how logic gates can be arranged to create a simple
combinational logic circuit These logic circuits are physical implemen-
tations of Boolean logicjunctions or simply logic functions. Every com-
binational logic circuit has exactly one logic function, but for any given
logic function an unlimited number of logic: circuits can be constructed
tc) implement that function. The logic: design process, then, is composed
of two steps: (I J determining and describing the logic function and (2)

implementing that function as a logic: circuit.

Any logic function can be expressed in a number of ways. As we have
seen, symbolic: representations of logic: gates can be used to describe

Circuits, and in fact most simple logic: functions are described in this

way. In the case where discrete TIL gates are used, the logic function

and logic: circuit may be determined simultaneously.

For complex logic functions, however, the optimal logic circuit isn't

obvious and may require a significant amount of calculation and
experimentation to determine. In this situation, it is beneficial to use
more conceptual representations for logic: functions, representations

that allow alternative logic- circuits to be quickly identified and selected.

When it becomes necessary to modify a logic- function, experiment with

alternative circuits, or manipulate the form of the circuit, these concep-

tual forms of representation are usually more helpful. We have seen how
truth tables, and even English language statements, can be used to

describe the operation of a digital logic function in a conceptual way.

Another form of representation, Boolean algebra, has been used for

many years to describe and manipulate- logic- functions.

Boolean algebra is a system of mathematics that allows us to manipu-
late logic. As before, we use the value 1 to indicate the true logical value

and a to indicate the false- logical value. We'll use true/false and 1/0
values interchangeably in the remaining discussions.

Boolean Equations

At the heart of Boolean algebra are the Boolean operators. These

Operators correspond to the AND, OR, XOR. and NOT logic gates

presented earlier. There are many ways of representing the AND, OR,
NOT, and XOR Boolean operators, and a variety of different repre-

sentations are used in digital design languages and formal texts. In

ABEL and in this book, we use the following symbols for Boolean

operations:
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Symbol Description

! NOT (inversion)

& AND
# OR
$ XOR (exclusive-OR)

In most formal texts on logic design, the AND operator is omitted from
Boolean equations. In this book, we will at all times include the AND
operator in equations in order to remain consistent with ABEL-related
discussions in other chapters.

Operator precedence (order ofevaluation or binding) is the order shown
in the preceding list. (In ABEL, however, the OR and XOR operations

have equal precedence.) As in standard algebra, parentheses may be
used to change the order of operations. In Boolean algebra, a variable

is a named entity (corresponding to a signal in a logic circuit) that can
have one of two possible values: 1 or 0. A Boolean expression is a
grammatically correct sequence of variables and Boolean operators.

A Boolean equation is composed of an output variable that is assigned

a Boolean logic function through the use of the assignment operator,

which is the equals sign. In ABEL, each equation is terminated by a
semicolon. The AND. OR, XOR. and NOT gates can be represented by
the following ABEL equations:

Y_AND = A & B;

Y_0R = A # B;

Y_X0R = A $ B;

Y_N0T = !A;

To help clarify these concepts, consider the following Boolean equation:

Y=A&B#C& IBj

This Boolean equation describes a logic function of three input variables

{Y=f[A, B, C)). The function can be described by the following English

language statement: The output variable Y shall be true if the input

variables A and B are both true, or if the input variable C is true and
the input variable B is false."

The NOT operator is a unary operator, which means it operates on a
single variable or subexpression. The NOT operator creates the comple-

ment (inverted) value of a variable or subexpression. For Boolean
algebra purposes, it is often most convenient to consider a true variable

and the complement of that variable as two separate entities. When this

is done, we refer to the inputs as literals. In the Boolean equation we
just presented, for example, the variable B appears as both a true and
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Y

B

C

Y

Figure 2.6 Three possible implementations of the same logic function

complemented variable. This means that the equation contains four

distinct literals {A, B, IB, and Q.

The AND, OR, and XOR operators are binary operators, operating on
two variables or subexpressions. Actually, it is sometimes more conven-
ient to consider the AND and OR operators to be n-ary operators

(operators that can operate on more than two variables) since the actual

logic gates that correspond to these operators may have more than two
inputs. This is allowed by the associative laws for these operators, as

we'll see in a moment.

Boolean algebra is a convenient method with which to describe logic

functions. It is never possible, however, to completely specify a logic

circuit with Boolean algebra, since there are many possible circuit

interpretations ofa Boolean equation. This is shown in Figure 2.6. Each
of the three circuits shown will have subtly different operating charac-

teristics, due to signal propagation and gate switching delays.

Formal Rules for Boolean Operations

A number of operations are used in the manipulation of Boolean
equations. We will present the formal rules ofthe operations most useful

to logic designers, although complete descriptions and proofs of these
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are beyond the scope of this book. The interested reader is referred to

any one of a number of books on the subject of logic design for further

study. Some of these texts are listed in the references at the end of this

chapter.

The following is a list of the operations that are of greatest interest to

us. We have added some exclusive-OR operations to the standard
operations commonly presented. We will assume the validity of these

additional operations without formal proof.

Standard Operations

1 . Commutative laws:

(a) A # B = B # A
(b) A & B = B & A

2. Identities:

(a) A # = A
(b) A # 1 = 1

(c) A & =

(d) A & 1 = A

3. Complement identities:

(a) A # !A = 1

(b) A & !A =

4. Involution:

(a) !!A = A

5. Indempotence:

(a) A # A = A
(b) A & A = A

6. Distributive laws:

(a) A # (B & C) = (A # B) & (A # C)

(b) A & (B # C) = (A & B) # (A & C)

7. Associative laws:

(a) A # (B # C) = (A # B) # C
(b) A & (B & C) = (A & B) & C
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8. Absorption:

(a) A # (A & B) = A
(b) A & (A # B) = A
(c) A # (!A & B) = A # B
(d) A & (!A # B) = A & B

9. Unity:

(a) A & B # !A & B = B
(b) (A # B) & (!A # B) = B

Exclusive-OR Operations

10. Associative law:

(a) A $ (B $ C) = (A $ B) $ C

1 1. Distributive law:

(a) A & (B $ C) = A & B $ A & C

12. Commutative law:

(a) A $ B = B $ A

13. XOR identities:

(a) A $ 1 = !A

(b) A $ = A
(c) A $ A =

(d) A $ !A = 1

14. Rules ofXOR complement:

(a) !(A$B) =A$!B
(b) !(A $ B) = !A $ B
(c) A $ B = !A $ !B

In addition to these rules, two theorems are widely used in Boolean
equation manipulations and logic minimization.

DeMorgan's Theorem

DeMorgan's theorem is used to find the complement of a Boolean
expression. This is particularly useful for programmable logic applica-

tions:
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(a) !(A # B) = !A & !B

(b) !(A & B) = !A # !B

DeMorgan's theorem can be generalized as follows: The complement of

any Boolean expression can be determined by replacing each OR
operator with an AND operator (while preserving the order of evalu-

ation), replacing each AND operator with an OR operator, and replacing

each literal with its complement. For example, the following two rela-

tionships are valid:

(c) !(A # (B & Q) = !A & (!B # !C)

(d) !((A # !B) & (C & A)) = (!A & B) # (!C # !A)

Shannon's Expansion Theorems

Shannon's theorems are used to isolate (factor out) one or more variables

in a logic function. Shannon's expansion theorems may be described

by the notation:

(a) f(A,B,C,..) = A & f(l,B,C,..) # !A & f(0,B,C,..)

(b) f(A,B,C,..) = (A # f(0,B,C,..)) & (!A # f(l,B,C,..))

where J(A,B,C,...) represents any multiple-variable Boolean logic func-

tion. Shannon's theorems are particularly useful during multilevel logic

minimization.

Standard Forms for Boolean Logic

A number of general forms may be used to express a Boolean logic

function. An understanding of these forms is important for effective use
of logic minimization techniques and tools.

We refer to any AND operation as a product. Any Boolean expression

that contains one or more literals operated on by one or more AND
operators is referred to as product term. For example, the expression

!A & B & !C & D

qualifies as a product term, while the expression

•a # b & !C

does not, since it includes a binary operator other than AND.

A product term expression is distinguished by the fact that only one set

of input conditions will result in a true evaluation of the expression.
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Logical Sum

OR operators are referred to as sums. Any Boolean expression that
contains one or more literals operated on by one or more OR operators

is a sum. The expression

!A # B # !C # D

is an example of a sum.

Sum of Products

When two or more product terms are operated on by one or more OR
operators, the form of the resulting expression is sum ofproducts. Ifwe
add an assignment operator and an output variable, we have a sum of
products Boolean equation, as in the following ABEL equation:

Y = A & !B & C # A & !B& !C# !A& !B&C;

Expressed as logic gates, this expression could be composed of one
3-input OR gate fed by three 3-input AND gates. As Figure 2.7 shows,

a sum-of-products form requires two levels of logic gates (discounting

the NOT gates required for the complemented input literals) for imple-

mentation. For this reason sum-of-products Boolean logic functions are

often referred to as two-level logic functions.

The sum of products form is the basis for most logic optimization

methods, and maps directly into the PLA structure presented earlier.

Figure 2.7 Sum-of-products two-level logic
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By utilizing the laws and theorems presented earlier, it is possible to

express any logic function, regardless ofcomplexity, in sum-of-products

form.

2.3 USING BOOLEAN ALGEBRA IN ABEL

Using the basic laws and theorems presented as tools, we can now begin

to experiment with various techniques that are useful for ABEL users.

Many of these manipulations are performed automatically by the ABEL
software, while others must be performed by the ABEL user. Chapter 3
describes in detail which optimizations are performed by the software

provided with this book.

Before moving on, though, let's examine some of the reasons why these

manipulations are often necessary. The primary motivations for

Boolean logic manipulations are to reduce circuit size or improve circuit

speed. All the common implementation technologies (simple and com-
plex PLDs, FPGAs, and gate arrays) are constrained in some way. Most
require that logic functions be implemented in specific forms (usually

sum of products or some derivative of sum of products), and all have
limited resources. The limiting resource is usually either logic gates or

signal interconnections (routing).

Traditional PLDs, for example, are limited in the number of product

terms that can be used for each output, so product term reduction is a
primary goal of optimization for these devices. If a logic function can't

be reduced sufficiently for a PLD implementation, it will be necessary

to perform multilevel optimizations to spread the circuitry for that

function across multiple levels of logic.

Another common limitation ofPLDs is the number ofinputs and outputs
available in each device. If a design can't be implemented into a PLD
due to I/O constraints, it is necessary to either change the design or

choose a different implementation. Choosing a different implementation
can involve using a different type of device, more than one device for

the function, or an entirely different implementation technology.

Speed isn't generally much of an issue when you are dealing with a
single PLD, since in most cases the delay times from inputs to outputs
are fixed and predictable, and PLDs are available that are fast enough
for most applications. For large designs implemented in FPGAs, or

designs that utilize many PLDs, the delay of signals due to multiple

levels of logic can wreak havoc on a system. For this reason more
advanced multilevel logic optimizations may be needed for large designs.
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Logic Minimization
Logic minimization is the process of reducing the amount of circuitry

required to implement a logic function. As we saw in Chapter 2, the

optimal form of a logic circuit depends to a large extent on the archi-

tecture into which the logic function is to be implemented. There are

dozens of methods for logic minimization and a wide variety of com-
puter-based tools that utilize these methods. Although we can't hope
to describe all these methods in this chapter, we will describe some of

the more popular minimization methods and define some concepts

common to all these methods.

Users of computer-based logic synthesis tools are often bewildered by
the descriptions of algorithms and logic forms and the strange language
used to describe the effectiveness of various techniques. The result, all

too often, is that the users of these tools never really understand how
to get the most benefit from them. In this chapter we'll go over some
common logic minimization techniques and clear up some of the

confusion over terminology.

3.1 TWO-LEVEL MINIMIZATION

To start with, consider a Boolean logic function with three variables A,

B, and C. Each variable can be expressed as either its true or comple-
mented value. Ifwe enumerate all combinations of these three variables

using the AND operator, we find eight possibilities, as follows:

23
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•A & !B & !C

•A & !B & C

!A 6 B & !C

!A & B & C
A & !B & !C

A & !B & C

A & B & !C

A & B & C

Each of these eight expressions is referred to as a minterm, or canonical

product. For any logic function of n variables, there are 2
n
possible

minterms. These Boolean expressions are called minterms because, for

each expression, there is only one set of input values that will result in

the value 1. For example, the minterm !A &1B&C will only evaluate to

1 for one set of inputs (A, B, and C equal 0, 0, and 1, respectively). The
importance of minterms lies in the fact that any logic function, regard-

less of complexity, can be expressed as a sum of one or more of its

minterms.

Maxterms

A maxterm is similar to a minterm, but is related to OR operations,

rather than AND operations. The eight possible maxterms for three

input variables are

•A # !B # !C

!A # !B # C
•A # B # !C

•A # B # C

A # !B # !C

A # !B # C
A # B # !C

A # B # C.

These expressions are called maxterms because they will evaluate to a

1 for all but one possible set of input values.

Minsums

A sum of products expression that consists of a sum of minterms is

referred to as a minsum. This form is important for many logic minimi-

zation techniques and is sometimes referred to as the canonical sum-of-

products or disjunctive normal form. For example, the 3-input

sum-of-products expression
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!A&B&C#A& !B&C#A&B& !C

is a minsum. since all the product terms in the expression are minterms,
whereas the expression

!A&B&C#A& !B&C#B& !C

is not a minsum, since the product term B & !C is not a minterm (the

variable A is not specified in the third product term).

Determining the Minsum of a Logic Function

Any arbitrarily complex logic function can be converted to sum-of-prod-

ucts form. Furthermore, any logic function can be converted to its

minsum form. To demonstrate how the minsum form of a logic function

can be determined, consider the following expression:

A& !B& !C#A&B

To get this Boolean function into minsum form, we'll use the postulates

and laws presented in Chapter 2. First, we know that the minsum form
will require three input variables for each product term in the expres-

sion, so we use the identity postulate to get the intermediate form:

A& !B& !C#A&B&1

Next, the complement postulate allows us to replace the 1 with the

expression C # !C, resulting in

A & !B & !C # A & B & (C # !C)

Finally, by utilizing the distributive law we obtain the minsum expres-

sion

A& !B& !C#A&B&C#A&B& IC

Other Standard Forms

There are other standard forms in which Boolean logic functions can
be expressed, including the product-of-sums canonicalform (referred to

as the maxproduct form), but since the vast majority of devices are

based on the sum of products form, and most logic minimization
techniques are also based on sum-of-products, we won't dwell on these
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other forms in this book. Again, the interested reader is referred to one
of the many books written on the subject of digital logic design for

further information.

Logic Minimization Methods

The various Boolean logic manipulations that we have shown can be
used to minimize logic. For large Boolean expressions, however, the

most efficient approach to take using these manipulations typically isn't

obvious, and finding the minimal solution can be extremely time
consuming.

A common method for systematically determining the minimal sum-of-
products expression for a given logic function was first described by
Maurice Karnaugh in 1953. This method uses a symbolic repre-

sentation of the logic function. The representation, called a Karnaugh
map, graphically depicts the function in a modified form of truth table

and allows simple, organized methods to be used for minimization.

To demonstrate how a Karnaugh map can be used, we will minimize
the following logic function:

A & B # !A&B#A& !B

A two-variable Karnaugh map for this function is shown in Figure 3.1.

a^ o

/i\

(T~Tu)

Figure 3.1 Two-variable Karnaugh map

The Karnaugh map (which we will from now on refer to as a K-map) is

composed of a number of boxes. Each box, or cell represents one

possible minterm for the function. Since this function has only two

variables, there are 2
2
possible minterms, as described earlier. Each

box is identified by the values indicated on the top and sides of the box;

a 1 indicates the true asserted variable, whereas a indicates the
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B
\ 1

(!A & !B) (!A & B)

1 (A & IB) (A & B)

Figure 3.2 Mapping minterms onto a 2-variable K-map

complement of that variable. In Figure 3.2, the possible minterms for a
two-input Boolean function are shown in their corresponding K-map
boxes.

If the minterm associated with a particular box actually exists in the

minsum form of the Boolean expression, then a 1 is written in that box.

The boxes so marked are referred to as 1 -cells. Cells not marked are

called O-cells.

To minimize a function using a K-map, we utilize the following relation-

ship developed from our earlier Boolean identities:

A & f # !A & f = fO

The variableJO represents any arbitrary Boolean function. To generalize

this and apply it to the K-map: if there are two product terms and one
isANDed with a variable (A) while the other is ANDed with that variable's

complement [!A], the product terms can be combined and the variable

eliminated if the product terms are otherwise identical.

This situation is identified on the K-map by pairs of horizontally or

vertically adjacent 1 -cells. As Figure 3. 1 shows, the pairs of 1-cells are

grouped. Each group of two corresponding minterms can be combined
into a single product term by elimination of the differing variable. For
this expression, the two groupings result in the simpler sum A # B.

The K-map technique is a method for determining the minimal sum-of-

products representation of a logic function from its minsum form. Most
logic minimization algorithms, in fact, first determine the minsum form
of a sum of products expression before beginning the minimization

process.

If you examine the K-map layout, you will notice that moving one box
either vertically or horizontally always results in a single bit change; in

this case, either A or B changes, but never both. This is obviously the
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Figure 3.3 Four-variable K-map

case for the simple two-variable K-map, but what about K-maps for

larger numbers of variables?

Figure 3.3 shows how a K-map for a four-variable Boolean function is

written. This K-map is composed of 16 boxes, but is still two dimen-
sional. Therefore, each box needs to represent the value of more than
two variables as indicated in the numbering. To maintain the require-

ment of single bit changes between horizontally and vertically adjacent

boxes, the horizontal and vertical axis values are numbered using a gray
code (also called a reflected code). As in the two-variable K-map, each
box represents a unique minterm. The rightmost box on the lower row,

for example, represents the minterm A & IB & C & ID.

To reduce the four -variable minsum expression indicated in the figure,

we first identify and circle all adjacent 1 -cells. This is shown in Figure

3.4. Notice that, in the lower center of the K-map, there are four 1 -cells

grouped together in a square pattern. If these four were to be grouped
as pairs, they could be combined in a number of ways. Which combi-

nation is appropriate? Actually, this decision isn't necessary. Whenever

\CD
ar\ 00 01 11 10

00

01

11

10

Q 1 1 £>

f\ f

J \

Figure 3.4 Minimizing a logic function with a four-variable K-map
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Figure 3.5 K-map for eight-minterm function

two pairs of 1 -cells are adjacent in this manner, it's an indication that

all four minterms can be combined into a single product term.

Similarly, the four 1 -cells that form an encircled rectangle on the upper
row can be combined, resulting in a significant reduction of logic. The
completely minimized expression is

!A & !B # A & D

In this example, the variable C was completely eliminated.

Next, consider the expression and K-map of Figure 3.5. In this K-map,
the eight 1 -cells have been grouped into two squares. This is possible

because the K-map edges are logically connected; it is convenient to

think of the K-map in terms of a cylinder in both the horizontal and
vertical directions. The variables A and C are both eliminated, and the

minimized form of this expression is simply

B & !D # !B & D.

Using K-maps for Larger Functions

There are many more applications of K-map techniques that are of

academic interest, but these are beyond the scope of this book. It is

interesting to note however, that K-maps like the one shown in Figure

3.6 can be constructed to determine the minimized sum-of-products
representation of expressions with more than four variables.

Since the size of the K-map increases exponentially with the increased

numbers ofvariables, this method quickly becomes impractical for large

designs. This fact and the availability of computer-based algorithms for

logic minimization have for the most part eliminated the need for tedious

manual K-map minimization. The K-map is useful, however, for graphi-
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cally demonstrating logic minimization concepts and gives important
insights into the workings of computer-based logic minimization algo-

rithms.

Cubes

Another graphic representation that is useful for describing logic mini-

mization concepts is the cube. Consider again the case where two
minterms of a function differ only in the value of one variable, as in

!A & B & C # !A & B & !C

As we saw in the K-map discussion, the two minterms in this minsum
can be represented by sequences of ones and zeroes that correspond to

true and complemented input variables. Using this representation in

another way, we can assign the minterms the values 01 1 and 010. A
function of n variables has a total of 2™ possible minterms. Ifwe imagine

that each variable corresponds to a dimension in space, we can repre-

sent the entire set of minterms as an ri-dimensional cube.

Figure 3.7 shows a two-dimensional cube, or 2-cube, represented by
four points connected by four line segments. This cube corresponds
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Figure 3.7 Cube representation for two variables (2-cube)

011 111

/ /
110010

B
001

/ /
000 A 00

101

Figure 3.8 Cube representation for three variables (3-cube)

directly to its K-map representation; each point on the cube represents

one box on a four -variable K-map. Movement along a horizontal line

segment correspond to changes in the first variable, while movement in

the vertical direction corresponds to changes in the second variable.

Each point on the two-dimensional cube is labeled with the correspond-

ing value of the input variables.

Figure 3.8 shows a three-dimensional cube, or 3-cube. The third

dimension of this cube is drawn as diagonal line segments. Motion along
these line segments corresponds to changes in the third variable. Notice

that, no matter what line segment you are on, movement from one point

to another always results in a change in only one input variable.

Figure 3.9 shows a four-dimensional cube (sometimes called a hyper-
cube). This, of course, is a 4-cube.
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0111

0101

0001

1110

1010

1000

Figure 3.9 Cube representation for four variables (hypercube)

Finding Cubes and Subcubes

Staying with the 3-cube for the moment, let's examine some of the ways
in which the cube representation can be used. The 3-cube has, as

components, a number of smaller cubes. Each face of the cube, in fact,

is a 2-cube. Every 3-cube, then, has six smaller subcubes that are

identified by the input variables represented by the line segments
associated with the subcube. In Figure 3.10, the indicated subcube is

011 in

/
010

B
001

no)

/
101

000 100

Figure 3.10 Identifying subcubes on a 3-cube
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defined by the 3-cube corners with the values 100, 101, 111, and I JO.

Notice that the first variable in these four points remains unchanged,
while at least one of the second and third variables changes from one
point to the next. The second and third variables are therefore the

variables that define the subcube. These variables are said to be
unspecialized in relation to that subcube, while the first variable is

specialized. If we specialize one of the two variables of the resulting

2-cube (or specialize two variables of the 3-cube), we end up with a
1-cube. We can even go as far as specializing all the variables of a cube,

in which case we find ourselves with 2
n
O-cubes, where n is the number

of input variables (a O-cube simply corresponds to one point on a cube).

Ifwe map the minterms of a logic function onto a cube, we can quickly

recognize subcubes of the function. Consider the following 3-variable

minsum function:

a & B & !C

# !A & B & C
# !A & !B & C

# !A & !B & !C

# A & !B & !C

Figure 3.11 shows how this function is mapped onto a 3-cube. Four of

the minterms of this function form a complete 2-cube. This 2-cube is

defined by specialization of the variable A, so we can immediately
recognize that these four minterms can be replaced by a single product
term that consists of nothing but IA. In addition, the 1-cube that is

Figure 3.11 Mapping a 3-variable function onto a cube
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formed by the minterms 100 and 000 can be reduced to the simpler

product term IB & !C, since A is unspecialized for that subcube. The
minimized function is then

!A # !B & !C

The K-map presented earlier is simply a convenient representation of a
cube and a method for quickly identifying subcubes.

Tabular Representation of Sum of Products

In the K-map and cube representations, we use the values and 1 to

represent the complement and true values of input variables. This helps

to simplify the identification and combination of cubes and subcubes
within the function, but requires that the function be expressed in its

minsum form.

Many logic minimization algorithms utilize another representation that

doesn't require that the function be expressed in minsum form. Like

the K-map representation, complement and true variables are indicated

by a or 1, respectively, and another symbol, the dash, is used to

indicate that a variable of the function isn't used (is unspecialized) for

a specific product term. To represent the four-variable function

A& !B&C&D#B& !C # A & D

in tabular form, for example, we write

1011
-10-

1-1

The dash symbol is referred to as a don't-care input condition since, for

the product term in which a dash is found, we don't care what value

that particular input variable has; the product term will evaluate to 1

regardless of that input's value.

As you may have already realized, this form is convenient for recognizing

or obtaining such things as minterms and cubes. A minterm is indicated

whenever there is a product term row that contains no dashes. A
minsum form is therefore a table that contains no dashes whatsoever.

The number of dashes in a product term indicates the dimensions of

the subcube represented by that entry in the table: two dashes indicate

a 2-cube, one dash indicates a 1-cube, and no dash indicates a 0-cube,

which is, as we said, a minterm.
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To convert the preceding table to minsum form, you replace each row
of the table with however many rows are required to eliminate the

dashes. For example, the last row becomes four rows as follows:

(1)

(2)

1-1 10-1

11-1

10-1 1001
1011

11-1 1101
mi

Prime Implicants

In a sum of products expression, each product term is called an
implicant of the logic function. If any product term evaluates to a 1 , it

implies that the entire function will evaluate to a 1 , regardless of the

value of the other product terms. Consider the following minsum
expression:

!A & b & c & D
#A&B&C&D
#A&B& !C&D
# !A & B & !C & D

Each of the four minterms in this expression is an implicant of the logic

function represented by the expression since, if any of these minterms
evaluates to a 1 , the entire expression will also evaluate to a 1 . These
four minterms aren't the only implicants of the function, however.

When the expression is simplified, we find that the first two minterms
can be combined into a single product term B & C & D by elimination

of the variable A. Similarly, the third and fourth minterms can be
combined to form the product term B & !C & D, also by elimination of

the variable A These two smaller product terms are therefore also

implicants of the function, since any input condition that results in

either of these product terms evaluating to 1 will result in the entire

expression evaluating to 1 as well.

The implicant product terms B &C &D and B & !C & D can, of course,

be simplified further by eliminating the variable C. The resulting product
term B & D is what is called a prime implicant of this logic function.

Since this logic function has only one prime implicant, that single

product term represents the minimal form for the logic function.
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To summarize, a prime implicant is any implicant of a logic function

that is not implied by any other subfunction. A logic function may have
any number of prime implicants.

Minimal Cover

The set of prime implicants for a given logic function is unique, since it

is determined from a unique set of minterms. It isn't always necessary,

however, to use all the prime implicants for a function to obtain the

minimal sum of products form. This is true because one prime implicant

for a function may cover a number of minterms, and overlaps can exist;

a single minterm can be covered by more than one prime implicant.

The goal of total sum of products logic minimization is to determine a
minimal subset of prime implicants that will cover all the minterms of

the function. This subset of prime implicants is called a minimal cover.

The important thing to understand about prime implicants is that the

fully minimized form of a logic function will consist of nothing but prime
implicants, but may not require all the prime implicants for the func-

tion.

Essential Prime Implicant

The search for the elusive minimal cover of prime implicants can be
hastened if we first attempt to determine which prime implicants are

required in a fully minimized sum-of-products representation of the

function. These prime implicants are known as essential prime impli-

cants and can't be eliminated from the function by any means. For
example, the three-variable function

!A& !C# !A&B#A&C#A& !B

is composed entirely of prime implicants. This is not, however, the

minimal sum of products form for this function. Two of the prime
implicants, !A & !C and A & IB, are essential prime implicants and must
be maintained. The remaining two prime implicants are not essential

and can be replaced by the single prime implicant B & C, resulting in

the function

!A & !C # B & C # A & <B.
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The Quine-McCluskey Procedure

The methods of logic minimization presented thus far are useful to help

understand the minimization process, but are not generally applicable

to large designs with more than five or six variables. In addition, these

methods are difficult to implement on a computer, due to their reliance

on pattern recognition.

The Quine-McCluskey procedure is a tabular method of logic minimi-

zation that can be performed manually or implemented on a computer.

This method is composed of two algorithms. The first algorithm deter-

mines all the prime implicants for a given logic function, and the second
selects from this set of prime implicants a subset that provides a
minimal full cover for the function. The Quine-McCluskey procedure

has been largely replaced by more efficient minimization methods, but
it is nonetheless valuable for developing an understanding of logic

minimization algorithms in general.

Determining Prime Implicants

As in the K-map method, the unity theorem [A & B # IA & B = B) is used.

A simplistic way to describe this process is to say that the algorithm
first determines the complete set of minterms for the function and then
utilizes the unity theorem repeatedly for all possible pairs of product
terms to obtain all the prime implicants of the function. In this process,

each pair of minterms is examined to determine if the two minterms
differ by exactly one position. Pairs so identified are combined into a
single product term having one fewer literal than the previous two. After

all minterm pairs have been examined, the process is repeated for the

resulting terms. This process is continued until we are left with the set

of prime implicants. A prime implicant is identified by the fact that it

can't be compared in this way with any other term.

This determination of prime implicants can be very time consuming,
particularly for functions with a large number of variables. The Quine-
McCluskey method uses the tabular representation described earlier to

speed this process.

We'll use an example to illustrate the algorithm. Consider a four-input

logic function

Jlw,x,y,z)

To perform a tabular comparison, the minterms for this function are
listed in order of the number of ones in the tabular assignment, as
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wjcyz
!w & !x & !y & !z

10 !w & !x & y & !z

10 !w & x & !y & !z

10 w & !x & !y & !z

0101 !w&x&!y&z
1010 w&!x&y&!z
1100 w&x&!y&!z
1011 w&!x&y&z
1101 w&x&!y&z
1111 w&x&y&z

Figure 3.12 Minterms for a 4-input logic function

shown in Figure 3.12. This ordering assists in the identification ofpaired

minterms.

Figure 3. 13 shows the steps used in the process of searching for prime
implicants. The second list is determined by combining those minterms
that differ by one position, as described previously. In the second list,

the dash (don't-care) replaces the removed variable. The two terms that

are combined to create the entry in the second list are marked with an
asterisk in the first list, indicating that they can't be prime implicants.

LISX1 LIST2 UST3

0000 * 00-0 * -0-0

0010* 0-00* --00

0100* -000* -10-

1000*
-010

0101
* 010-

1010* -100

1100* 10-0

1-00

1011
*

1101
* -101

1111
* 101-

110-

*

1-11

11-1

Figure 3. 13 Finding prime implicants by tabular comparison
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Having marked an entry in the first list doesn't complete the comparison

process for that entry, however; each entry in the list must be compared
with every other entry to eliminate all possible nonprime implicants.

This means that there are n2 comparisons required for the first list

alone, where n is the number of minterms in the list. In practice, the

ordering of the list (by the number of ones in each product term) means
that not all pairs need to be examined, speeding the comparison

process.

When all the entries in the first list have been so compared, the process

is repeated for the second list to create the third list. Note that, during

the comparisons for the second and subsequent lists, candidate pairs

must have dashes in the same position. It isn't possible, for example,

to compare the terms J -00 and -101.

When all the entries in the second list have been compared, three entries

are left that are not marked. These entries are prime implicants.

Attempts to compare the third list produce no combinations, so we are

left with the three prime implicants from the second list plus the three

in the third for a total of six prime implicants for the function. This

technique for finding prime implicants has general applicability beyond
the Quine-McCluskey method and is frequently used.

Determining a Minimal Cover

The second step in the Quine-McCluskey method is the determination

of a minimal cover for the function, using the prime implicants found
as a result of the first step. This is done by first creating a covering table

as shown in Figure 3. 14. The covering table shows all the minterms of

the function and which minterms are covered by which prime impli-

0000 0010 0100 0101 1000 1010 1011 1100 1101 1111

1-1- X X

1-11 X X

11-1 X X

-0-0 X X X X

-00 X X X X

-10- X X X X

Figure 3.14 Covering table
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1011 1111

101- X

1-11 X X

11-1 X

Figure 3.15 Reduced covering table

cants. Obviously, it will speed the process if this covering table is

constructed from the comparison information determined during the

first step. The rows ofthe table list the prime implicants identified, while

the columns represent the minterms of the function.

When the covering table has been completed, we can easily identify the

essential prime implicants. These are the implicants (in this case the

terms -0-0 and -10-) that are the only covers for one or more minterms.
In the covering table, the essential prime implicants are entered in

bold-face.

Since we know that the essential prime implicants must appear in the

minimal cover, we can simplify the covering table by removing the rows
corresponding to these essential prime implicants and all the columns
corresponding to minterms covered by them. This simplification leaves

us with the reduced covering table shown in Figure 3.15.

This reduced table shows that the prime implicant J- J J covers both of

the remaining minterms, so this prime implicant, combined with the

two essential prime implicants previously identified, comprises the

minimal cover for the function. The minimal cover, expressed in equa-
tion form, is then

w & y & z # !x& !z#x& !y

3.2 ON-SETS, OFF-SETS, AND DC-SETS

When a logic function is described, it can be expressed in one of many
ways. When we describe a function using the form of Boolean equations

we presented earlier, we are describing the set of input conditions that

will cause the expression to evaluate true. We call this set of input

conditions the on-set. All other input conditions will result in the

expression evaluating to false. This set of implied conditions is called

the off-set. When we describe a function by specifying only its on-set (as

when using Boolean equations), we must assume that all conditions not

covered in the description comprise the off-set. Similarly, if a function
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truth_table( [A,B,C] -> [Y])

[0,0,0] -> [01 i

[0,0,1] -> [111

[0,1,1] -> till

[1,1,1] -> till

[1,1,0] -> t0]|

[1,0,0] -> toil

Figure 3.16 Incompletely specified truth table

is described only by its off-set, then it must be assumed that all

unspecified conditions form the on-set.

The truth table representation is used to describe a logic function by
specifying both its on-set (indicated by ones) and off-set (indicated by
zeroes). For many (perhaps most) logic designs, certain input conditions

will never be encountered by the circuitry being described. Also, some
input conditions may only occur at times when the output of the circuit

will be unused. This information about the design can be used to

advantage when minimizing the logic for that circuitry. Ifwe know that,

for certain input conditions, the output may be either true or false with

no effect on the operation of the system, we can reduce the amount of

circuitry required to implement the function. These input conditions

are collectively referred to as the don't-care set, or dc-set This is best

illustrated in a truth table. Figure 3.16 shows an ABEL truth table

representation of a three-variable logic function.

This truth table is only partially complete; the value of the output
variable Y is missing for the input conditions, where A, B, and C are

J J J or 00 1. This truth table is what we call an incompletely specified

truth table.

The missing conditions are implied by omission, and are the don't-care

conditions for Y. The truth table rows that specify a 1 for Yare conditions
belonging to the on-set, while the remaining rows are the conditions

A\ 00 01 11 10
t—

v

f1 1
:

1
J_^

3C
A\ 00 01 11 10

n A

1

\
1

J

Y = !A&C#B&C Y = C

Figure 3.17 Two forms of a partially specified logic function
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.BC
\ 00 01 11 10

1 1 —

1 — 1

Figure 3.18 Indicating don't-cares on a K-map

that are members of the off-set. The two unspecified conditions form
the dc-set for this function. There are four possible nonredundant
implementations for this function; two are shown in Figure 3. 17. As this

example demonstrates, the intelligent use of don't-cares can have a
dramatic affect on the size of the circuit.

Determining the minimal implementation of a function containing

don't-care conditions is simply an extension of the principles outlined

earlier. To represent don't-care input conditions on a K-map, we place

a dash (-) symbol on the cell corresponding to that input condition, as
shown in Figure 3.18.

The K-map can be processed as though the dash symbol represented

either a 1 or 0, whichever results in the minimal cover. For this K-map,
we can see that replacing the dash in the lower row with a 1 will result

in a reduction of logic, whereas replacing it with a will not.

For many purposes, it's useful to think of the don't-care value as an
actual circuit condition. This is a common approach used in circuit

simulators. This means that each variable now has three possible

values: true, false, and don't-care. The truth table representation allows

us to specify a function by supplying the on-set and off-set, with the

dc-set being implied by omission from the table. When describing a
function with equations, it's usually more convenient to describe the

function by supplying its on-set and dc-set. (In ABEL, the dc-set

equations can be specified by using the don't-care assignment operators

?= and ?:=.) When a function is described by its on-set and dc-set, the

off-set is implied. Similarly, it's possible to describe a function by
supplying only the off-set and dc-set, with the on-set implied.

When you design using a combination of on-sets and off-sets, on-sets

and dc-sets, or off-sets and dc-sets, you must be careful not to create

overlap conditions such as those shown in Figure 3. 19.

In this truth table, the same input condition is listed in both the on-set

and off-set for Y. This is easy to detect in a truth table (or K-map), but
is not so easy to detect if on-sets and off-sets are being expressed in
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truth_table( [A,B,C] -> [Y]

)

[1,1,0]
[1,0,0]

[0,0,1]

[0,1,0]

[0,1,1]
[0,1,0]

[1,1,1]

->

->

->

->

->

->

->

[0]

[0]

[0]

[1]

[0]

[0]

[1]

[1,0,1] -> [1]

"Error here

Figure 3.19 Overlapping truth table conditions

some other form (notably Boolean equations or state transitions). This

is a common area of confusion for users of computer-based logic

minimization tools. (The ABEL compiler will, in most cases, detect

overlaps such as this and report an error.)

3.3 MULTIPLE-OUTPUT MINIMIZATION

When targeting a design to a simple PLD, the preceding techniques are

adequate, since there is no sharing of logic from one device output to

another. In PLA-type devices, however, there is opportunity for improve-

ment. The total amount of circuitry required to implement a multiple-

output function can be reduced if all outputs of the function are

evaluated together.

Figure 3.20 shows two three-variable functions expressed as K-maps.
Each function has two prime implicants as shown. The K-maps, when
overlaid, show that one prime implicant is common to both functions.

Considered together, then, it is possible to implement both of these

functions using a total of three product terms.

The prime implicant shared by the two functions is called a multiple-

\BC
A\ 00 01 11 1C

\BC
oc 01 11 10

1 1

1 1 11 (1 1) Ci 1 )
\-J V-J

Y = A&C#B&!C Y = A&C#!B&!C

Figure 3.20 Two functions with a shared prime implicant
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\BC
A\ 00 01 11 10

*~\

(1 1 )

1u
Y=!A&B#B&!C

.BC
A\ 00 01 11 10

1 a m a

Y=A&C#A&B
Figure 3.21 Two independent functions

output prime implicant. The two prime implicants that are not shared
are called single-output prime implicants. In this example, the minimal
form for the multiple-output function is the same form that results from
the outputs being minimized individually. This is not, however, always
the case. Consider the example functions shown in Figure 3.21.

If we minimize these two functions separately, the results are the

groupings indicated, which correspond to the minimized equations

Yl = !A & B # B & !C;

Y2 = A & C # A & B;

.

There are no common prime implicants in these functions. If, however,

we identify those 1 -cells that are common to both K-maps and group in

a manner that isolates those cells, we can obtain a set of implicants (not

necessarily prime implicants) that will provide a minimal cover for the

combined functions. Figure 3.22 shows such a grouping and the

corresponding Boolean equations for the two functions.

Notice that the two functions now require a total of three product terms,

compared to the original four. Notice also that the product term A &B
& !C is not a prime implicant of either function and is therefore not a
single-output prime implicant. It is a multiple-output prime implicant

for this multiple-output function, however, since there is no other

multiple-output implicant for this set of functions that implies it.

3.4 MULTILEVEL OPTIMIZATION

All the techniques described previously have been used to minimize sum
of products Boolean equations. We have assumed that the sum of

products form is the most optimal (in terms of gate requirements). In

the real world, however, many constraints beyond the product term
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vBC
A\ 00 01 11 10

1

Y=IA&B#A&B&!C

(1 1)

.BC
A\ 00 01 11 10

1 Ci O tu

Y = A&C#A&B&!C
Figure 3.22 Isolating shared implicant

count must be considered. These include the problems of fan-out,

constrained numbers of inputs to gates or sum of product logic blocks,

and problems of timing hazards. For these reasons, it is often necessary

to implement a design using multiple levels of logic. An example of this

is found in the following sum-of-products equation:

Y !A 6 IB ft IC 6 ID 6 !G

# !A & !B & F
# !A & !B & D & E & 16;

This seven-variable function might be implemented as shown in the

circuit of figure 3.23.

If, however, the constraints of the target implementation include a
requirement that all gates have four or fewer input variables, some
changes will be required. Figure 3.24 shows how the function can be
implemented in a multilevel form to meet the four -input gate criteria.

In a multilevel circuit, some or all of the signal paths experience a delay

of more than two gates.

Actually, many possible multilevel circuits could have been constructed

to implement the function within the constraints specified. The circuit

shown takes advantage of the fact that there is a term [LA & IB) that is

common to all three product terms of the original sum-of-products
function. This term is isolated by a process called factoring, and the

isolated term is called a factor.

Factoring

Factoring is the primary technique for converting two-level repre-

sentations into multilevel forms. Factoring is useful for those situations

where an equation is too large (too many inputs or too many product
terms) to fit into the logic dedicated to one PLD output or if other
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Figure 3.23 2-level form of a 7-variable function

Figure 3.24 Multilevel form of 7-variable function

electrical constraints (such as fan-out restrictions) prevent the use of

two-level logic.

In factoring, we break up a two-level sum of products equation into

multiple levels of sum of products equations by using intermediate

variables. For example, the sum of products equations
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Y0=A&B#A& !C#D&B#D& !C;

Yl = D & B # D & !C;

Y2 = E & !B & C;

could be factored into the equations

D & £0;Y0 = A & fO #

Yl = D & fO;

Y2 = E & !f0;

fO = B # !C;

for a savings of one product term. The variable JO is the intermediate

factor variable. In this example, a reduction in the total number of

product terms was achieved, but this isn't always the case. Often, the

constraints that drive the need for factoring result in a larger set of

equations. Factoring, then, can be used as a tool for multilevel logic

minimization or as a tool for meeting other constraints that may actually

result in larger circuits.

It may seem that factoring is of no use for simple devices like PLDs,
since they are usually inherently two-level in their design. Although it

is true that most PLDs are essentially sum-of-products logic devices,

the intermediate signals (factors) can often be allocated to unused
combinational outputs of the PLD and fed back into the sum-of-prod-

ucts array as an input. Many of the newer PLDs feature folded arrays

or buried nodes that allow multilevel logic to be mapped into the devices

with no waste of I/O pins.

The ABEL compiler will do a rudimentary factoring (in the form of

intermediate carry generation) if the ©CARRY directive is specified for

large set expressions such as adders, counters, and comparators. More
comprehensive factoring is typically performed by device fitters, since

multilevel optimizations are usually better performed when the software

has knowledge of the target device architecture.

3.5 OPTIMIZING WITH EXCLUSIVE-ORS

Exclusive-OR gates, or XORs, are found in many of devices, and these

gates can be used to advantage in a number of ways. When we add an
XOR gate to the usual sum-of-products structure, we have a structure

that is referred to as an XOR of sum of products. This form is shown in

Figure 3.25.
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J3>n

/^
Figure 3.25 XOR of sum of products

Standard Forms For XOR Functions

One form of Boolean equation that utilizes the XOR-of-sums-of-prod-
ucts structure is called the Reed-Muller form, in which all literals of the

Boolean equation are asserted true, as in the equation

X = (A & B # C & D) $ (D # E & F);

Like the sum of products form, any logic function can be expressed in

Reed-Muller form. Since no input inverters are required, the Reed-
Muller form requires the same number of gate delays (in terms of gate

count from input to output) that the sum of products form requires,

while requiring a smaller total number of logic gates for most functions.

Another form is called the generalized Reed-Muller, or GRM, form. In

the GRM form, there may be a mixture of true and complement literals,

but no variable of the function can appear in the equation in both its

true and complement form. If both the true and complement literals for

a variable appear in the equation, the equation is said to be in a mixed
GRM form. Mixed GRM is the form used in PLDs that have XOR gates

fed by sum of products arrays.
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Optimizing for Constrained XORs

There are many different implementations of XORs in programmable
devices, all ofwhich have certain constraints. Some of these implemen-
tations are asymmetrical, and some allow term sharing between the OR
gates. We can exploit the behavior of these built-in XORs for efficient

polarity control of complex equations. Consider the following XOR
equation:

X = (A # C & B # C & D) $ (E # F) ;

If we wish to implement this equation in a programmable device such
as the 20X8 PAL (which has an XOR arrangement similar to that just

shown), it will be necessary to make some modifications to the equation

since, as the equation is written, it is inappropriate for the structure of

the device.

First, it will be necessary to complement both sides of the equation,

since the 20X8 features inverters on its outputs. This is easily done with

an XOR equation ifwe utilize the XOR complement identities presented

earlier. According to those rules, it is possible to complement the entire

equation simply by complementing one sum of products input to the

XOR. For the preceding equation, either ofthe following equations might
be appropriate:

!X = (A # C & B # C & D) $ (!E & IP);

or the alternative form

IX = (!A & IB & !D # !A & !C) $ (E # F)

;

In the first equation, the right side of the XOR operator was comple-
mented (E # F became IE & !F], while in the second equation, the left

side of the XOR was complemented [A#C&B#C&D became IA & IB

& ID # IA & !C).

Complementing the inputs to the XOR gates was accomplished through
the use of DeMorgan's theorem. Notice that both forms of the comple-
mented equation use a similar amount of product terms and literals

and therefore require the same amount of circuitry. The first equation,

however, cannot be implemented in the 20X8 device, since in the 20X8
only two product terms are available on each side of the fixed XOR gate.

The first equation given requires three product terms for one of the XOR
inputs. For this implementation, the second form of complemented
equation is the preferred form.
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It is important to understand that, in the absence of a specific target

device type, there is no right answer when making these sorts of

equation optimizations. The first of the two equations, while not being
appropriate for the 20X8 architecture, would be in the correct form for

other types of devices (the Cypress 330, for example, which has many
product terms allocated to one input of the XOR gate and only one
product term allocated to the other).

The XOR complement identities can also be used to help minimize logic

in situations where no equation inversion is desired. Consider the

equation

!X = (A # C & B # C & D) $ (E # F);

This is the same equation wejust presented, but with the output already
complemented. As noted, this equation cannot be directly mapped into

the 20X8 device because there are too many product terms on the left

side of the equation. We can modify this equation, however, so that it

will fit. All that is required is that we complement both sides of the XOR
operator, in accordance with the XOR complement identities. The
resulting equation

!X = (!A & !B & !D # !A & !C) $ (!E & !F);

will fit into the 20X8 device.

Using XOR Factoring

A lesser known application of XOR gates is a technique called XOR
factoring. This method can be used to reduce the number of product

terms needed to implement a design in an XOR device. Consider the

following sum-of-products equation:

Y = A
# X0 & XI & X3 & X4 & X5 & X6 & X7

# X2 & X3 & X4 & X5 & X6 & X7

#

#

#

#

#

#

#

X0 &

XI &

X2 &

X3 &
X4 &
X5 &
X6 &

X7
X7
X7
X7
X7
X7
X7;



3.5 OPTIMIZING WITH EXCLUSIVE-ORS 51

As written, this equation consumes ten product terms. Because of this,

it is not possible to implement this function in a PLD with only eight

product terms per output. It is possible, however, to implement this

equation in just four product terms, using XOR factoring.

The technique ofXOR factoring is based on theXOR identities presented

earlier. These identities allow us to XOR any Boolean expression with a
second expression and then XOR the resulting larger expression with

the second expression again, ending finally with the original expression.

For example, the equation

X = A & B;

is functionally equivalent to the equation

X = B $ (B $ (A & B));

In effect, the two XORs cancel each other.

By identifying certain commonly used subexpressions in an equation
and factoring these out with an XOR, we can reduce the number of

product terms required for the primary expression in the equation. In

many cases, this can dramatically reduce the total number of product
terms required. Using the previous equation for V as an example, we
first modify the sum of products equation as follows:

Y = (iA & X7)

$ ((!A & X7)

$ (A

# XO & XI & X3 & X4 & X5 & X6 & X7
# X2 & X3 & X4 & X5 & X6 & X7
# !X0 &

# !X1 &

# 1X2 &

# !X3 &

# !X4 &

# 1X5 &

# !X6 &

X7
X7
X7

X7
X7

X7
X7);

For this equation, we have chosen the term !A & X7 for a factor. When
we convert the equation to mixed GRM form (preserving !A & X7 as one
operand of the XOR) and minimize the two sum-of-products XOR
inputs, we get an equation of the form



= (!A & X7)

$ ( ( !A & XO & XI & X3 & X4 & X5 & X6

# !A & X2 & X3 & X4 & X5 & X6 & X7

# !A & XO & XI & X2 & X3 & X4 & X5
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& X7

& X6));

This equation now requires only four product terms in addition to the

XOR gate.

How did we decide on the XOR factor IA & X7? Partly through trial and
error. We chose a variety of different candidate factor terms based on
which literals were observed most frequently in the equation, and
experimented to determine which would result in the most savings of

logic. We deliberately chose a single-term XOR factor that was relatively

simple. There is no reason, however, why an XOR factor can't be a
complex expression that results in an even split of the equation into two
similarly sized components. As you might imagine, then, the number of

possibleXOR factors is enormous, including subexpressions of all sizes.

The choice ofXOR factor is affected to a great extent by the architecture

of the device into which the design is being implemented. Clearly, if one
of the OR gates that feeds the XOR has more product terms available

than the other, this needs to be taken into consideration when selecting

a factor term.

Exclusive-OR optimizations (such as XOR factoring) are not performed
by the ABEL compiler or logic optimizer supplied with this book. These
optimizations are performed only by device-specific fitting software,

since XOR structures vary widely from one device to the next.

3.6 REFERENCES

Brayton, Robert K. , Hachtel, Gary D., McMullen, Curtis T, Sangiovanni-

Vincentelli, Alberto L., Logic Minimization Algorithmsfor VLSI Synthesis,

Kluwer Academic Publishers, Hingham, MA, 1984.

Breeding, Kenneth J., Digital Design Fundamentals, Prentice Hall,

Englewood Cliffs, NJ, 1989.

Mano, M. Morris, Digital Design, Prentice Hall, Englewood Cliffs, NJ,

1984.

Pellerin, David and Holley, Michael, Practical Design Using Programma-
ble Logic, Prentice Hall, Englewood Cliffs, NJ, 1991.

Unger, Steven J., The Essence ofLogic Circuits, Prentice Hall, Englewood
Cliffs, NJ, 1989.



3.6 REFERENCES 53

John F. Wakerly, Digital Design Priciples and Practices, Prentice Hall,

Englewood Cliffs, NJ, 1990





a D D D

Sequential Circuits
Chapters 2 and 3 focused on the design and optimization of purely

combinational logic. Combinational logic is distinguished by the fact

that it contains no memory elements and has no feedback loops. A
combinational circuit is so named because, for any given input combi-
nation, the output (or outputs) will produce a known logical result

regardless of the circuit's previous condition. The behavior of sequential

logic circuits, on the other hand, depends not only on the inputs to the

circuit, but also on the fed-back state of the circuit. The current state

(as observed on the circuit's outputs) is provided back into the circuit

as one or more inputs by means of feedback.

A typical model of a sequential circuit is shown in Figure 4.1. There are

two fundamental parts to a sequential circuit such as this. The first is

the combinational logic that decodes the current state of the circuit as

it is fed back. The second is the feedback loop and associated delay

element. The delay element may be nothing more that the propagation
delay of the gates in the combinational logic or as complex as a clocked

memory element (a flip-flop, for example.)

4.1 SYNCHRONOUS SEQUENTIAL CIRCUITS

A synchronous sequential circuit features some form of periodically

clocked memory element to ensure proper synchronization of circuit

outputs. Such a circuit operates in regular cycles of sufficient duration

that the propagation delays within the combinational logic portion do

55
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Figure 4.1 Typical model of a sequential circuit

not affect the operation of the circuit as a whole. In each cycle of

operation there exists, simultaneously, information about the current

state of the circuit and the next state. For this reason, these circuits are

often called state machines. State machines can also be constructed

that are self-timed, and do not rely on periodically clocked memory
elements. These asynchronous state machines will be described later

in this chapter.

A simple state machine is illustrated in Figure 4.2. This circuit is

composed of combinational logic that decodes the previous state of the

machine (as stored in the clocked memory element) and the state

machine inputs to determine the next state. The next state is fed to the

memory element and, when the memory element is clocked, the next

state becomes the current state.

This simple state machine has only one fed-back signal and one
corresponding memory element. Since there only two possible values

for the signal and memory element, this state machine has only two

possible states. The number of states possible in a state machine is 2n ,

where riis the number ofmemory elements, or state bits, in the machine.

SET

HOLD

Figure 4.2 Simple state machine circuit
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Synchronous Memory Elements

A variety of different types ofmemory elements can be used to store the

current state of a synchronous sequential circuit. These memory ele-

ments include the basic flip-flop and latches familiar to most designers.

The most common of these memory elements used in simple PLDs and
FPGAs (the most likely target technologies for ABEL designs) is the

edge-triggered D flip-flop shown in Figure 4.3.

D

Q 1 J
clk jiJij~ij~i_njnj~Ln

Figure 4.3 Edge-triggered D flip-flop

As the timing diagram indicates, the D flip-flop stores the value applied

to its D (data) input whenever the CLK input transitions from a low to

a high. The amount of time required to load the D input, during which
that input must be stable, is called the setup and hold time. Once a
value has been loaded into the D flip-flop, the Q output of the flip-flop

will remain at that value until the next rising clock transition is observed

on the CLK input.

A distinguishing characteristic of a clocked D flip-flop is its inherent

default state. When no information is presented to the flip-flop during

a clock, it will always return to the low state. This fact can be used to

advantage when designing state machines, with some caveats that we'll

explore later.

The clocked T flip-flop, shown in Figure 4.4, differs from the D flip-flop

in that the Q output of the flip-flop doesn't reflect the value observed on
the flip-flop input. Instead, a true (high) input to the T input during the

rising clock transition will cause the Q output to toggle (reverse its

value). This behavior is useful for counter applications.

The clocked SR flip-flop features two inputs, labeled S and R. This

flip-flop is illustrated in Figure 4.5. The truth table shown in the figure

defines the operation of the flip-flop. The S (set) input is used to load a
true (high) value into the flip-flop during rising clock transitions,

whereas the R (reset) is used to clear the flip-flop during rising clock

transitions. Ifboth the S and R inputs are asserted true during the rising

clock transition, the result observed on the Q output is indeterminate.



58 Chapter 4: Sequential Circuits

CLK T QN-i On

t

1 1

t 1 1

t 1 1

Figure 4.4 Clocked T flip-flop

S Q

->CLK

- R

CLK S R Qn-1 Qn

1 1

1 X 1

1 X

1 1 X ?

Figure 4.5 Clocked SR flip-flop

- J

->CLK

K

CLK J K Qn-1 Qn

1 1

1 X 1

1 X
1 1 1

1 1 1

Figure 4.6 Clocked JK flip-flop

The SR flip-flop does not have an inherent default state. Unspecified

circuit conditions will result in the flip-flop remaining in the previous

state.

The clocked JK flip-flop is shown in Figure 4.6. This flip-flop has two
data inputs, labeled J and K. The JK flip-flop operates the same as an
SR flip-flop, with the exception of the case when both inputs are true.

In this case, the flip-flop toggles. This is shown in the truth table.

The value of the JK flip-flop lies in the fact that, by adding a simple

interconnection or inverter gate between the J and K inputs, it can be
made to function as a D or T flip-flop. This is shown in Figure 4.7.
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Figure 4.7 T and D flip-flop emulation using a JK flip-flop

Flip-flop Emulation

The technique of flip-flop emulation can be used to advantage when
designing sequential circuits. Flip-flop emulation will frequently allow

a sequential design to be implemented in a device that features flip-flops

not of the type required for a particular function. XOR gates are often

used for these emulations.

The type of flip-flop that is most appropriate for a design is not always
available in the device being used for implementation. Devices that

feature configurable flip-flops (D/JK or D/T, for example) can simplify

the job of designing state machines, at the expense of device complexity.

Even without configurable flip-flops, the use of flip-flop emulation
techniques can help simplify the determination of sequential logic.

CLK

CLK

Figure 4.8 D-to-T and T-to-D flip-flop emulation using an XOR gate
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It can be shown that any of the flop-flop types described previously can
be used to emulate any of the other three flip-flops if appropriate input
forming logic and/or outut feedback is provided. We have seen already

how a JK flip-flop can be used to emulate D and T flip-flops. Another
example of flip-flop emulation is shown in Figure 4.8: it is possible to

emulate a clocked T flip-flop with a clocked D flip-flop (the reverse is

also true) if an XOR function is introduced into the circuit. This XOR
could be implemented directly, or could be expanded into the sum of

products form for implementation without an XOR gate. Specific exam-
ples of flip-flop emulation are explored in Chapter 7.

Determining State Machine Logic

A four -state machine is shown as a block diagram in Figure 4.9. We
haven't shown the circuitry for this machine. Instead, we'll show two
representations of the machine's operation. The first (Figure 4.10) is a
representation called a state graph or bubble diagram. The state graph
contains circles corresponding to the four states of the machine. Each
state is identified by a binary value that is the state value for that state.

Each arrow corresponds to a transition from one state to the next and
is annotated by the set of input conditions that will cause that transi-

tion.

Figure 4. 1 1 shows another representation of the state machine: the

state table. A state table is nothing more than a truth table segmented
horizontally into three (or four) sections. The first two sections corre-

CLK

STATE
CONTROL
LOGIC

D Q

>CLK

D Q

>CLK

Q1

Q0

Figure 4.9 Four-state state machine block diagram
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Figure 4.10 State graph of a four-state state machine

Current State Inputs Next State

Q1 QO R Q1 QO

1

1

1 1

1 1 1

1 1 1

1 1 1

1 X

Figure 4.11 State table for four-state state machine

spond to the current state of the machine and the state machine inputs,

respectively. These two sections are the truth table inputs. The third

section corresponds to the values applied to the state register and is the

output of the truth table representing the next state of the machine.
The fourth section (which we will utilize later) represents circuit outputs
that are not state bits.

Each horizontal row of the state table represents one state transition

for the state machine. If you compare the state graph with the state

table, you will see that there is one state table row entry for each
transition arrow in the graph.
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Transition D Input

to Off

to 1 On

1 to Off

1 to 1 On

Figure 4.12 Transition table for D flip-flop

Transition T Input

to Off

to 1 On

1 to On

1 to 1 Off

Figure 4. 13 Transition table for T flip-flop

Transition J Input K Input

to Off

to 1 On

1 to On

1 to 1 Off

Figure 4.14 Transition table for JK flip-flop

Transition S Input R Input

to Off

to 1 On Off

1 to Off On

1 to 1 Off

Figure 4.15 Transition table for SR flip-flop
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The state table is a convenient form for evaluating state transitions and
determining transition logic. The determination of transition logic is

done independently for each bit of the state register. To determine the

logic for each state bit, we analyze each transition and convert the

transition data to a set of on-set and off-set equations that are appro-

priate for the type of flip-flop being used.

We begin by converting each row of the state table into one product term
that represents the current state and state machine inputs for that row.

These product terms are called the condition product terms. The
condition product terms are then applied to the flip-flop inputs accord-

ing to the type of transition required (low to high, high to low, or hold).

Transition tables specify the types of equations required for each
possible transition in a specific flip-flop. There is one flip-flop transition

table for each type of flip-flop. Flip-flop transition tables for the D, SR,
JK, and T flip-flops are shown in Figures 4. 12 through 4. 15.

Armed with our flip-flop transition tables, we can now generate logic for

each bit of the state machine. Let's begin by mapping the condition

product terms for the state machine into on-set and off-set equations

for D flip-flops. To do this, we refer to the flip-flop transition table for D
flip-flops (Figure 4. 12). This table shows us which transitions (in terms
of bit changes) will require on-sets or off-sets. Beginning with Ql, we
can see from the table that a change from state to 1 or from 1 to 1 will

require an on-set equation, whereas a change from state to or 1 to

will require an off-set equation. Using this information, we can map
the condition product terms for each transition into on-sets and off-sets.

The resulting on-sets and off-sets can be mapped directly into a K-map
(with on-sets corresponding to 1 -cells and off-sets corresponding to

O-cells) or written as equations. Both forms are shown in Figure 4. 16.

The K-map can be used to minimize the logic, using the methods
presented earlier. As you can see from the K-map representation, this

state machine is completely specified; there are no undefined states,

QO Q1
\ 00 01 11 10

1 1

1

QO = IR & !Q0 & !Q1

# IR & QO & !Q1

.00 Q1
\ 00 01 11 10

1 1

1

Q1 = IR & Q0 & IQ1

# IR & Q0 & Q1

Figure 4.16 K-map and Boolean representations for state machine transitions
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HLD

HLD/O-^ VC )
HLD

hlS HLD

HLDV V-/ ±~S J HLD

HLD

Figure 4.17 State graph for a more complex machine

and all transitions are accounted for. Now let's generate the logic for a
more complex state machine: one intended for JK flip-flops and with

undefined states and unspecified transitions. A state graph for this state

machine is shown in Figure 4. 17.

To implement this state machine in JK flip-flops, we apply the flip-flop

transition table for JK flip-flops to the condition product terms. Once
again, we use the bit changes (from current states to next states) to map
into the flip-flop transition table. The transition table for JK flip-flops

has entries for both the J and K inputs to the flip-flops. As you can see

from the table, the two inputs of a JK flip-flop require the same number
of condition product terms as a D type. This is because the JK flip-flop

retains its data until cleared and can exploit don't-care conditions

during toggle operations (transitions from to 1 or 1 to 0).

The on-sets and off-sets for this state machine are shown in K-map form
in Figure 4.18. The indicated groupings, utilizing don't-care minimiza-
tion, result in the following optimized equations for the J and K inputs

to the state register flip-flops:

Q2.J = Ql & JHLD;

Q2.K = !Q1 & !Q0 & IHLD;
Ql.J = Q0 & !HLD;

Ql.K = Ql & !HLD;
QO.J = !Q2 & IHLD;
QO.K = 02 & !HLD;



4.1 SYNCHRONOUS SEQUENTIAL CIRCUITS 65

\Q0 HLD
Q2 qX 00 01 11 10

00

01

11

10

Q2(J) = Q1 & IHLD

\Q0 HLD
Q2 qK^OO! 01 11 10

00

01

11

10 n
Q2(K) = !Q1 & IQO & IHLD

\Q0 HLD
02 nX oo 01 11 10

00

01

11

10
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- - - -

1

Q1(J) = QO & IHLD

\Q0 HLD
Q2 qX 00 01 11 10

00

01

11

10

Q1(K) = IHLD

\QO HLD
Q2 qX 00 01 11 10

00

01

11

10

1

Q0(J) = IQ2 & IHLD

\Q0 HLD
Q2 qX 00 01 11 10

00

01

11

10

Q0(K) = Q2 & IHLD

Figure 4.18 Transition logic for JK flip-flop state machine
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INPUTS
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Figure 4.19 Moore model state machine

INPUTS

COMBINATIONAL
LOGIC

STATE
MEMORY

OUTPUTS

Figure 4.20 Mealy model state machine

Mealy and Moore Machines

The previous state machines are examples of Moore model state ma-
chines. In Moore model machines, the outputs of the machine are

functions only of the current state of the machine or of inputs that are

synchronized with the machine. The typical example of a Moore model
machine is a synchronous counter circuit.

In a Mealy model machine, the outputs of the machine are determined
not only by the current state of the machine, but by decoding of state

machine inputs as well. In a Mealy model machine, some or all of the

state machine outputs will change state asynchronously as the inputs

to the machine change. In a Moore machine, all outputs are synchro-

nized with the state registers. These two types of state machines are

diagrammed in Figures 4.19 and 4.20.

The model of machine you are constructing can have an impact on the

type of device in which the design can be implemented. For example, if

you are designing a Mealy model state machine, you probably aren't

concerned with the actual state values used for each state of the
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machine and may not even require that the state bits be accessible

outside the device.

4.2 STATE MACHINE LOGIC MINIMIZATION

The amount of circuitry required to implement a state machine can be
greatly reduced by the careful choice of bit values for the machine's
states. How do you determine the optimal state assignment? In general,

you should number the states for as few bit changes as possible for the

transitions defined. Ifyou are using D flip-flops, you should also attempt
to minimize the number of transitions to states with many values of 1

in the state registers (state Oil costs more than state 100, in terms of

transition logic required). This is not, however, always the optimal

assignment, particularly for PLD implementations. In a PLD, it is often

necessary to optimize a single bit of a state machine at the expense of

other state bits if the logic for that particular bit is too large for the

device.

As a practical matter, it is rarely necessary to determine an encoding
that will result in the absolute minimum of logic. If the design fits into

the target device, there is no benefit in spending hours trying new
encodings. In PLD implementations of state machines, the constraint

is usually I/O and register resources rather than product term limita-

tions.

State Encoding Methods

When minimization of state machines is required, one of a number of

basic approaches can be taken. The first approach is to analyze the state

transitions and renumber the states to minimize logic requirements for

problem state bits. The brute force version of this approach is to simply
assign unique random values to the states until a set of values results

in a fit. This is not as bad as it sounds; a near minimal encoding is

usually encountered within ten attempts, so selecting the best result

out of ten random encodings may be just as good as spending the time

to fully analyze the machine.

If it becomes necessary to analyze the state machine to determine a
near -minimal encoding, the following steps should be taken. First,

decide on a default state for transitions out of unspecified states. If D
flip-flops are being used, this should be the encoding in which all state

registers are 0. If T or JK flip-flops are being used, you must either

provide a method for determining when unspecified (presumably illegal)
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states have been entered and resetting to a default state or insulate the
state machine from any asynchronous inputs that could cause a false

transition to an illegal state.

After determining the default state, begin assigning state values to the

other states in an order determined by the number of transitions into

each state. Beginning with the state having the most transitions in from
other states, assign an encoding that requires the least logic: for D
flip-flops, this will be an encoding that has as few ones as possible (state

0001, for example) whereas for T flip-flops, an encoding that results in

the fewest bit changes is best. This latter case implies that the source
states must be encoded at the same time as the destination state. This
is why determining a near-optimal encoding for T flip-flops can be more
tedious than for D flip-flops.

If one or more states in the machine share common transition logic to

the same destination state, further reductions in logic can be achieved

by numbering these source states with similar encodings (encodings

that share as many state bits as possible.) For both D and T state

registers, the use of don't-cares in the minimization process (as de-

scribed earlier) can have a dramatic impact on the transition logic

required. Using don't-cares, however, can cause problems in D and T
state machines that do not have any provision for escaping from illegal

states.

An alternative approach to state machine logic minimization is to reduce
the input forming logic (the combinational logic feeding the state

registers) by assigning a larger number of state registers to the state

machine. The extreme case of this approach is one-hot encoding, in

which a unique register is assigned to each state in the machine.

One-hot encodings are most valuable for state machines that are to be

implemented in FPGA-type architectures, since these architectures

provide a relatively large number of registers.

4.3 METASTABILITY

Metastability is a condition that plagues synchronous designs that are

required to interface with asynchronous input signals. In normal
operation, digital storage elements such as flip-flops are said to be
bistable; this means that they are stable in only two possible states (high

or low).

A metastable state is an unpredictable, symmetrically balanced state of

operation that a clocked flip-flop can enter if the input to that flip-flop

changes during the setup and hold period of the clock transition. Once
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in this state, the flip-flop will require an unknown amount of time to

relax to a stable (but unpredictable) state.

With an increasing number of systems being developed that rely on
asynchronous circuit interfaces, the problem of metastability is becom-
ing more widespread. This problem frequently exhibits itself when
asynchronous signals are used as inputs to synchronous state ma-
chines. Typical applications in which metastability appears include

arbiter circuits, bus interfaces, synchronizers, and controllers.

Device manufacturers have attempted to respond to the metastability

problem by designing the flip-flops in their devices to be metastable
hardened, meaning they will relax to a steady state quickly after a
metastable event. Such claims should be examined carefully, however,

particularly if high clock speeds are required and the application

requires a high level of reliability. Even with quick recoveries from
metastable events, the problem of false transitions to illegal states must
be considered in the design of a state machine that includes asynchro-

nous interfaces.

If a high level of metastable protection is required, you can utilize

additional flip-flops to insulate the state machine from asynchronous
events, as shown in Figure 4.21. This circuit, a bus synchronizer, has
two additional D flip-flops that are used to insulate the primary storage

element from metastable triggering input conditions. Note, however,

that it is not possible to completely eliminate metastable events. The
best a designer can hope for is the reduction of the probability of such
events occurring to the point where the system can be reliably operated.

Determining how far to go in protecting a given system from metastable
events is therefore a function of the number of metastable-vulnerable

components in the system, the expected frequency of occurrances of

GRANT REQUEST

CLK

Figure 4.21 Metastable insulated synchronizer
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metastable-triggering inputs, the volumes to be produced, and the life

cycle of the product.

To help in these calculations, many device manufacturers publish
statistics on the metastable behavior of their devices. Statistics can be
used to quantify the metastable behavior of specific device types, and
these statistics, if available, should be utilized to help determine the
suitability of a particular implementation for asynchronous interface or

arbitration applications. If a very high level of reliability is required,

these statistics must be carefully applied along with the other factors

discussed previously.

4.4 ASYNCHRONOUS STATE MACHINES

When no globally synchronized memory element is used in a sequential

circuit or when the circuits inputs are not synchronized with the rest

of the circuit, the circuit is said to be asynchronous.

Asynchronous state machines are circuits that do not rely on an
external clock to provide sequencing and separation of transition

events. The simplest example of an asynchronous state machine is the

set-reset (SR) Jlip-Jlop shown in Figure 4.22.

The SR flip-flop has two states that can be observed on its outputs: high

and low. As the function table indicates, the SR flip-flop must be
protected from situations in which both of its inputs (S and R) are high.

This is because the resulting next state when both inputs are asserted

is dependent on the exact timing of the input signals.

Q

Q

Figure 4.22 SR flip-flop circuit
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A
B

C
A & IB

B & C
Y

^Gate
Delay

Glitch

A

B z» J£^
Figure 4.23 Circuit with static hazard

Hazards

Asynchronous state machines must be carefully designed to avoid

hazards. Hazards are unpredictable conditions that can exist within

logic circuits and lead to erroneous circuit operations. A major problem
with hazards is in their often insidious nature. A design that works
reliably when implemented in one manufacturer's device may not work
at all in a seemingly identical device obtained from another manufac-
turer. This is due to the different timing characteristics of various types

of devices.

PLDs produced by different manufacturers, for example, often have
differing internal propagation delays. If a working circuit is imple-

mented in a PLD but relies on this internal timing, glitches are likely to

occur when the design is later changed or implemented in a new device

or technology. A glitch is a spurious output signal often seen as a spike

when viewed with an oscilloscope.

Figure 4.23 illustrates a circuit that contains such a hazard. The output
of this circuit will glitch under the situation shown in the timing diagram
included in the figure. This is due to the unequal propagation delay from
the input signal B to the two AND gates.
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This type of hazard is called a static hazard. A static hazard is indicated

when the initial and resulting values ofthe circuit are the same. In other

words, the glitch occurs on an output signal that wouldn't otherwise

change state. When a glitch occurs on an output signal that is changing
states (from high to low or low to high), it's referred to as a dynamic
hazard.

This circuit is highly simplified, but if you substitute for the inverter

delay path a delay that might be seen in a multilevel logic implementa-
tion or from a signal routed through a complex path in an FPGA, you
can see how such hazards can be created in designs of all sizes.

Hazards come in two broad types: function hazards and logic hazards.

A Junction hazard exists whenever the stability of a circuit output
depends on the simultaneous change in two or more circuit inputs. This

can be illustrated in a truth table such as the one shown in Figure 4.24.

The function described by the truth table is a simple XOR.

In the sequence of circuit stimuli shown in the timing diagram of Figure

4.25, there is a period of time during which the two circuit inputs are

both changing state. During this time the output of the function can
glitch.

module hazard

A,B pin;
Y pin istype 'com';

truth_table ([A,B] -> [*])

[0,0] -> [0];

[0,1] -> [l];

[1,0] -> [11

J

[1,1] -> [0];

end

Figure 4.24 Truth table with function hazard

u
B J EL

Y _l EI^ L_
Potential

Glitch

Figure 4.25 Condition under which a glitch can occur
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Figure 4.26 State machine with hazard

As you might imagine from this simple example, function hazards are

found everywhere in asynchronous systems. The challenge to the design

engineer is to identify the hazards that will adversely affect the reliability

of the circuit as a whole and to make whatever circuit modifications are

necessary to protect the system. How do you protect your system from
such hazards? In most cases you can't remove the hazards, so you must
instead either avoid them or mask them.

An example of hazard avoidance is found in state value assignment.
Consider an asynchronous state machine with the four states shown
in Figure 4.26. The current state of the machine is indicated by the two
state bits whose values for each state are indicated in the diagram. The
transition from state B to state C, for example, creates the same glitch

potential that we saw in the timing diagram of Figure 4.25. Ifthe change
in state of the two state bits doesn't occur at precisely the same time,

the machine will briefly appear to be in state A or D. If these states result

in other illegal transitions or glitches, the machine will become hope-
lessly lost. To avoid this hazard, we can simply swap the state values

for states C and D so that, for any state machine transition, only one
bit change is required.

There are other classes of hazards that don't require that two or more
inputs change at the same time. These hazards are called logic hazards
because they are related to the physical characteristics of the actual

logic circuitry. Logic hazards can be identified in simple circuits by
examining a K-map representation of the logic.

Figure 4.27 illustrates a design, in K-map form, that may contain a logic

hazard. The logic hazard is related to the C input, which is the single

input variable that is specialized in the two product terms of the

function (refer to Chapter 3 for a complete description of these terms).
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\C D
A r\ 00 01 11 10

00

01 Tl

11 U (T

10 1

Figure 4.27 K-map showing hazard potential

The two product terms that are indicated by the K-map groupings
shown are

B& !C&D#A&C&D

Since the output of both of these product terms relies on C, the period

during which C changes state can create a glitch under the circum-

stances illustrated in Figure 4.28.

To mask this glitch, it's necessary to provide additional circuitry that

will hold the output high during the change in value of Y. The appro-

priate circuitry can be quickly identified from the K-map, as shown by
the new groupings in Figure 4.29.

The additional product term [A&B&D) identified in the K-map serves

to protect the output from the glitch. The modified ABEL equations are

Y = B & !C&D#A&C&D#A&B&D;

When redundant product terms are introduced into the design, it's

important to turn off any logic reduction performed by the ABEL
compiler. In ABEL this is done by specifying the 'retain' attribute in

signal declarations (see Appendix A.)

A

B

C
D

Y
Z

Potential

Glitch

Figure 4.28 Timing diagram showing logic hazard
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Figure 4.29 Identifying glitch masking product with a K-map

Asynchronous State Encoding and Transition Logic

To design a reliable asynchronous state machine, hazards must be
avoided in all state transition logic, and each state in the machine must
be self-stabilizing. Assigning state values for asynchronous state ma-
chines requires you to analyze each transition and ensure that each
change from a source to a destination state results in only a single bit

change and that the inputs to the machine are either hazard free or

hazard protected through the addition of redundant product terms. For
states that include branches to two or more destination states or in

situations where a single bit change is impossible, it may be necessary

to add one or more hazard states to cover potentially unintended
transitions and to recover to one of the valid destination states.

Outputs of asynchronous state machines often require that delay

circuitry be added to the state machine in the form of additional states.

Since the time that a self-timed asynchronous state machine may spend
in a particular state can be extremely short (possibly as short as the tpu

of the target device) it may be necessary to hold the outputs at the

desired signal level through one or more delay states to meet minimum
pulse width requirements. These delay states must be treated like any
other state in the machine, with single bit change transitions or hazard
states provided.

If automated tools are used for logic minimization, it may be necessary

to disable the optimization of state machine transition and output

equations, or to add hazard protection logic (redundant product terms)

after logic minimization.
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Input Timing

Just as in synchronous state machines, asynchronous machines must
be protected from potential destabilizing input conditions. Although it

is sometimes believed that asynchronous state machines are inherently

better equipped to deal with asynchronous inputs, this is not actually

true in all cases. Synchronous state machines constructed using
clocked flip-flops are vulnerable to destabilizing inputs only during the

setup and hold times of these flip-flops. At all other times, spurious
inputs are ignored. Asynchronous state machines, on the other hand,
are vulnerable to destabilizing inputs at all times; however, the input
situations that cause problems for the two types of state machines are

different. For the synchronous state machine, a single change in the

value of any one input during the setup and hold time is a potential

problem that can cause a metastable situation. For asynchronous state

machines, the problem is inputs that change values faster than the tpu

of the state machine itself or situations in which two or more inputs

change value within the tpD time period.
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Using ABEL
ABEL (Advanced Boolean Expression Language) is a language optimized

for, but not limited to, the description of circuits to be implemented in

PLDs and FPGAs. Version 1.0 of the language was introduced by Data
I/O Corporation in 1984. This first version was intended solely for the

description of PLD-based logic circuits, and the simplicity of the original

language reflected the relative simplicity of the programmable devices

available at that time. As time went on and devices became more
complex, ABEL was updated accordingly. In version 4.0 the language
was significantly overhauled, allowing it to be used for general-purpose

logic design independent of a specific target device or technology.

Version 5.0 added new language features that make ABEL more appro-
priate for describing very large designs.

Appendix A of this book contains more complete ABEL language infor-

mation and should be referred to when new designs are being developed.

In this chapter we introduce the ABEL language and show how equa-
tions, truth tables, and state diagrams (the three basic logic description

methods provided in ABEL) are written and processed.

5.1 LANGUAGE OVERVIEW

Hardware design using ABEL is similar in many respects to software

design using languages such as Pascal or C. ABEL designs are entered

with a text editor and are then compiled into an internal form that may

77
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be merged with other design elements, optimized, and executed (via

simulation) before implementation in hardware.

ABEL differs from software programming languages in that it is used to

describe functions that are inherently parallel. All statements in an
ABEL design may be thought of as being executed at the same time.

This is particularly important to realize when describing sequential

circuits. The sequential operation of a circuit is never a function of the

order in which ABEL language statements describing that circuit are

entered.

ABEL, like other HDLs, provides different textual entry formats that

may be combined as needed to meet the specific requirements of the

design. The description methods available in ABEL are: high-level

equations, truth tables, and state diagrams. Within a single ABEL
module, one or more of these three description methods are used to

completely specify the desired circuit.

5.2 USING ABEL EQUATIONS

Before launching into the more interesting circuits described in the later

chapters of this book, it's important for us to understand how high-level

equations are used in ABEL design descriptions. In ABEL, the complex
expressions available for high-level equations are also available for use
with other design description methods (such as state descriptions). For

this reason it's important to understand how high-level equations relate

to lower -level Boolean equations.

First, consider the design of a simple 12-input, 4-output multiplexer. A
digital multiplexer such as this is used to select one or more inputs from

a larger set of inputs and to route these signals to a corresponding
number of outputs. The selection of inputs is made by providing

information to the multiplexer's data selection inputs. At the least, a
multiplexer requires n data selection inputs in order to select between
2
n
possible signal routings.

Our multiplexer selects one of three sets of four inputs [a0-a3, b0-b3,

c0-c3) and routes the signals to the outputs {y0-y3) as indicated by the

values appearing on the select input lines [sO and si). The possible

values for si and sO are shown next, along with the resulting signal

routings:
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Select Input Data Outputs

s1 sO y3 - yO

1 a3 - aO

1 b3 - bO

1 1 c3 - cO

(all low)

To simplify the design of the multiplexer, we have grouped the various

inputs and outputs into sets. Figure 5.1 shows the declarations and
equation portions of an ABEL source file that completely describe the

function of our multiplexer.

In the design file, all the input and output signals are declared using
PIN declarations, and the declared signals are grouped into sets through
the use of constant declarations. This grouping of signals into sets

simplifies the subsequent description of the circuit.

The equations section follows the declarations section, and contains the

actual description of the multiplexer circuit in the form of a high-level

equation. In the equation, the relational operator == is used to provide

a comparator function for the Select input set. Each line of the equation

corresponds to one of the possible multiplexer selections.

module mux

a3 . . aO PIN;

b3 . .bO PIP-

c3 . .cO PIN;

si , sO PIN;

y3 . .yO PIN ISTYPE 'com';

A = [a3.. aO];

B - [b3.. bO];
C [c3 . . cO];
Y = [y3.. yO];
Select = [Sl,£10];

e<zuatiMM

y = (Select . 1) & A
* (Select ==> 2) ft B

t (Select 3) 6 C;

end

Fig ore 5.1 ABEL equations and declaratl
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When processed by the ABEL language compiler, the multiplexer equa-
tion is converted into four separate sum-of-products Boolean equations,

one for each output [yO through y3). These equations can then be
implemented into hardware directly (as a sum-of-products logic array)

or can be further processed by logic minimization routines to reduce
the number of product terms used.

For a better understanding of the design techniques to be described

later, it's important to understand how a high-level equation such as

this is converted into sum-of-products Boolean equations. We'll show
how this is done by going through the conversion process manually.
(For efficiency reasons, the actual sequence of operations performed by
the language compiler is different and requires fewer steps, but the

resulting circuit is the same.)

First, the declarations for A, B, C, Select, and Vare substituted into the

equation to form

[y3,y2 # yl,y0] = ([sl # s0] == 1) & [a3,a2,al,a0]
# ([sl,s0] == 2) & [b3,b2,bl,b0]

# ([81,80] == 3) & [c3,c2,cl,c0];

Next, the numeric constants are expanded to match the set widths of

the expressions in which they are found. For this equation, the expan-

sion of numeric constants results in the equation

[y3,y2,yl,y0] = ([sl,sO] == [0,1]) & [a3,a2,al,a0]
# ([sl,sO] == [1,0]) & [b3,b2,bl,b0]
# ([si, SO] == [1,1]) & [c3,c2,cl,c0];

Now that the relational expression has been normalized in terms of set

widths, the relational operators can be converted to Boolean operators.

The rules for conversion of the == operator result in the equation

[y3,y2,yl,y0] = (!sl & sO) & [a3,a2,al,a0]
# (si & !sO) & [b3,b2,bl,b0]
# (si & sO) & [c3,c2,cl,c0] ;

The next phase of the conversion is the distribution of AND operators

into the sets. This conversion results in
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[y3,y2 # yl,y0] = [a3

a2

al
aO

[b3

b2
bl
bO
[c3

c2

cl
cO

•si &

!sl &

!sl &

!sl &
si &

si
si
si
si
si
si
si

sO,

sO,

sO,

sO]

! sO,

! sO,

!sO,

!sO]

sO,

sO,

sO,

sO];

The equation is now in a form that can be separated easily into

individual equations for each of the four outputs:

y3 = a3 & !sl & sO,

# b3 & si & !s0,

# c3 & si & sO;

y2 = a2 & !sl & sO,

# b2 & si & !s0,

# c2 & si & sO;

yl = al & !sl & sO,

# bl & si & !s0,

# cl & si & sO;

yO = aO & !sl & sO,

# bO & si & !s0,

# cO & si & sO;

These equations, which are now in a sum of products form, can be
mapped directly into the sum-of-products logic array of a simple PLD
or implemented as a part of a larger FPGA. If necessary, the Boolean
equations can be processed by logic minimization modules. For this

design, further minimization is unnecessary.

5.3 USING TRUTH TABLES

Truth tables are useful for describing circuits such as decoders in which
the relationship of inputs to outputs doesn't follow a regular pattern.

They can also be used effectively for describing state machines.

A truth table is composed of a header that specifies the ordering of the

input and output entries in the table and truth table entries that specify
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truth_table( [D3, D2, 01, DO] ->
: a, b, c, d. e. f. g])

[ 0, 0, 0, 0] ->
: i. 1, 1, 1, 1, 1, 0];

t 0, 0, 0, 1] ->
: o, 1, 1, 0, 0, 0, 0];

[ 0, 0, If 0] ->
: i. 1, 0, 1, 1, 0, l];

[ 0, 0, 1, 1] ->
: i, 1, 1, 1, 0, 0, l];

[ 0, 1, 0, 0] ->
: o, 1, 1, 0, 0, 1, l];

t 0, If 0, 1] ->
:

i. 0, 1, 1, 0, 1, l];

[ 0, If 1, 0] ->
: i, 0, 1, 1, 1, 1, U;

[ 0, If 1. 1] ->
: i, 1, 1, 0, 0, 0, 0];

[ If 0, 0, 0] ->
: I* 1, 1, 1, 1, 1, l];

[ If 0, 0, 1] ->
: i. 1, 1, 1, 0, 1, l];

Figure 5.2 ABEL truth table syntax

input to output relationships. A sample ABEL truth table is shown in

Figure 5.2. This truth table describes a logic function that converts

binary coded decimal numbers into the appropriate set of outputs to

drive a seven-segment decoder.

As with Boolean equations, truth tables can be written more concisely

if set notation is used. Figure 5.3 shows a complete ABEL source file,

with set notation simplifications, for the seven-segment display driver.

This design is an example of a truth table that is incompletely specified;

not all possible combinations of inputs are listed on the left side of the

truth table. What sort of circuit is created when an incompletely

specified truth table is processed? This depends on the level of logic

minimization used.

The unspecified entries in a truth table can be evaluated as don't-cares

and used to help minimize the circuitry required. In ABEL, the optimi-

zation of don't-cares in truth tables is performed if the 'dc' attribute has
been specified for each truth table output. If the 'dc' attribute has not

been specified, the missing truth table entries will be placed in the

off-set for the function along with other truth table entries with outputs
of 0. If the 'neg' signal attribute has been specified, the missing entries

will be placed in the on-set ofthe function so that the design is optimized

for a negative polarity implementation. Appendix A describes the 'dc'

and 'neg' attributes in more detail.

Using Truth Tables for State Machine Design

Truth tables are also well suited for describing state machines, particu-

larly those that contain a large number of similar transitions. Truth
tables written for the purpose of state machine specification are often

referred to as state tables. To demonstrate how a state machine is

expressed using truth tables, consider the state graph illustrated in
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module BCD7
title 'BCD to 7-segment display driver'

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1

II Seven- segment display driver with active-low
// outputs. Segments: -a-

// f| lb

// -g-

// e| |c

// -d-

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1

D3..D0 pin; "BCD input
a,b,c,d,e,f ,g pin istype 'dc,com'; "Segment outputs
OE pin; "Output enable

BCD = [D3..D0];
LED = [a,b,c,d,e, f ,g]

;

ON, OFF = 0,1; "Inverted sense for common anode LEDs

equations

LED.oe = !OE; "Define output enable

truth_table (BCD-> a , b , C , d , e , f , g 1)
->

: OFF, OFF, OFF, OFF, OFF, OFF, ON] ;

1 -> ON, OFF, OFF, ON, ON, ON, ON] ;

2 ->
: OFF, OFF, ON, OFF, OFF, ON, OFF] ;

3 ->
: OFF, OFF, OFF, OFF, ON, ON, OFF] ;

4 -> ON, OFF, OFF, ON, ON, OFF, OFF] ;

5 ->
: OFF, ON, OFF, OFF, ON, OFF, OFF] ;

6 ->
: OFF, ON, OFF, OFF, OFF, OFF, OFF] ;

7 ->
: OFF, OFF, OFF, ON, ON, ON, ON] ;

8 -> OFF, OFF, OFF, OFF, OFF, OFF, OFF] ;

9 -> ' OFF, OFF, OFF, OFF, ON, OFF, OFF] ;

test_vectors
([OE, BCD -> a , b , C , d , e , f , a ])

[ o, -> OFF, OFF, OFF, OFF, OFF, OFF, ON] |

[ o. 1 -> ON, OFF, OFF, ON, ON, ON, ON] ;

t o. 2 -> OFF, OFF, ON, OFF, OFF, ON, OFF] ;

[ o, 3 -> OFF, OFF, OFF, OFF, ON, ON, OFF] ;

[ o, 4 -> ON, OFF, OFF, ON, ON, OFF, OFF] ;

[ o. 5 -> OFF, ON, OFF, OFF, ON, OFF, OFF] ;

[ o. 6 -> OFF, ON, OFF, OFF, OFF, OFF, OFF] ;

[ o. 7 -> OFF, OFF, OFF, ON, ON, ON, ON] ;

[ o. 8 -> OFF, OFF, OFF, OFF, OFF, OFF, OFF] ;

[ o, 9 ->
. OFF, OFF, OFF, OFF, ON, OFF, OFF] ;

[ 1. 5 ->

end

Figure 5.3 Seven-segment display decoder design file
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Reset

Reset & Hold

Reset & Hold

Reset

Figure 5.4 Four-state Moore-model state machine

Figure 5.4. The state machine illustrated by the state graph has four

states (represented by the bubbles) and nine possible state transitions

(represented by the arrows). This Moore-model state machine has no
outputs other than the state register itself, which could consist of a pair

of D flip-flops.

To describe this simple state machine in a truth table, all possible

transition conditions are listed along with their resulting next states.

The ABEL design file is shown in Figure 5.5.

In the design file, the four states of the machine are given the values of

zero through three, and the symbolic names of A, B, C, and D,

respectively. The state values decode to the binary values 00, 01, 10,

and 11, respectively.

Next, a truth table is used to specify the state machine's operation. The
first line of the truth table specifies that the machine is to return to

state A unconditionally when the Reset input is asserted. The second
line specifies that when Reset is false the machine should advance to

state B (without regard to the value ofthe Hold input). The third through
sixth entries describe the behavior of the state machine in states B and
C. In these states, an asserted Hold input results in the machine holding

in its current state, while a false Hold results in the machine advancing
to the next state. The final line of the truth table specifies that the

machine should return unconditionally to state A after one clock cycle

in state D.
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module TT2
title 'Truth table state machine example'
////////////////////////////////////////////////////////////
// 4-state state machine described using a truth table. //

// Each line of the truth table represents one state //

// transition. Multiple transitions (such as the reset) //

// can be combined in a single table entry with the .X. //

// no-connect (don't-care input) special constant. //

////////////////////////////////////////////////////////////
Clk,OE pin; "Clock, enable inputs

Hold, Reset pin; "Control inputs

Q1,Q0 pin istype 'reg'; "State bits

A = 0; B = 1; C = 2; D = 3; "State values

Eequations

[Q1,Q0] .elk = Clk;
[Ql,Q0].oe = !OE;

Truth_table ( [Reset, Hold, [Q1,Q0]] :> [Q1.Q0])

[ 1 , • A • / X ] :> A ,

[ , • A • i A ] :> B ,

[ , 1 , B ] :> B
|

[ ,. o , B ] :> C ,

[ o 1 , C ] :> C |

[ o . o , C ] :> D
[ .X. f • ™ • ff

D ] :> A

Test_Vectors ([Clk,(>E, Reset Hold] -> [Q1,Q0])

t.c, 0, 1 ]
-> A;

[.c, 0, 1 , 1 ]
-> A;

[.c, 0, , 1 ]
-> B;

[.c, 0, 1 ]
-> B;

[.c, 0, ]
-> C;

[.c, 0, 1 ] -> C;

[.c, 0, ] -> D;

[.c. 0, ]
-> A;

[.c, 0, ]
-> B;

[.c, 0, ]
-> C;

I.e.* 0, 1 ]
-> A;

End

Figure 5.5 Four-state state machine design file

5.4 USING STATE DIAGRAMS

A state diagram is a relatively simple method of describing the operation

of complex state machines. Any state machine that can be described in

a state diagram can also be described using a truth table (or equations,

for that matter.) The key difference between truth tables and state

diagrams is that when you describe a state machine using a truth table
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module SM2

title 'Truth table state machine example'
////////////////////////////////////////////////////////////
// 4 -state state machine described using a state diagram. //

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1

Clk,OB pin; "Clock, enable inputs
Hold, Reset pin; "Control inputs
Q1,Q0 pin istype 'reg'; "State bits

0; B = 1; C = 2; D 3; 'State values

Equations
[Q1,Q0] .elk - Clk;

[Q1,Q0] .oe - JOE;

State_Diagram [Q1,Q0]

State A: If IReset Then B Else A ;

Case Reset • X •

IReset & Hold : B;

(Reset & IHold : C;

Endcase;

State C: If Reset Then A
Else If Hold Then C
Else D;

State D: Goto A;

TestJVectors ([Clk,<DE, Reset Hold] -> [Q1,Q0])

I.e.. 0, 1
, ]

-> A;

I.e., 0, 1 , 1 ]
-> A;

[.c. o. , 1 ]
-> B;

[.c, 0, , 1 ]
-> B;

I.e.. 0, ,, ]
-> C;

t.c. 0, , 1 ]
-> C;

I.e., 0, , ]
-> D;

t.c. 0, , ]
-> A;

[.c. 0, , ]
-> B;

t.c, 0, , ]
-> C;

t.c, o, 1 , ]
-> A;

End

Figure 5.6 ABEL state diagram syntax

you describe the machine primarily in terms of its transitions. When
you use a state diagram, you describe the machine more in terms of its

possible states.

Figure 5.6 shows an ABEL state diagram. This state diagram describes

the same state machine thatwe previously described using a truth table.

Notice that the state diagram contains one state description for each of
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the four states in the machine. The state diagram, like the truth table,

has a header that specifies which signals are to be used for the state

register. Unlike a truth table, other state machine inputs and outputs

are not included in the state diagram header. Another difference is that

the state register declared in the state machine header is flip-flop type

independent; the state machine is written the same regardless of the

type of flip-flops used for the state register.

Following the header is a series of state descriptions. Each state

description includes a value declaration, transition information, and
optional equations for circuit I/O (not used in this example).

To describe the state machine transitions, each state description con-

tains one or more transition statements. If you compare the state

description for each state to its equivalent bubble in the state graph,

you can see how the state transitions are expressed. StateA has a simple
two-way branch which is described using an IF-THEN-ELSE statement.

States B and C have identical transition logic, but were described using

different methods to show the use ofABEL's CASE transition statement.

State D has a single unconditional transition, represented by the GOTO
statement.

Figure 5.7 shows a state graph of a simple state machine with the same
four states presented previously, but with different transition logic and
other state machine outputs.

The operation of this state machine begins in state A and remains there

as long as the Hold input is false. When Hold is asserted, the machine

Hold

REG1 = 1

B j COM1 = 1

Hold

H°ld REG1 = 1

COM1 = 1

Figure 5.7 Four-state state machine
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advances to state B, and from there to state C, remaining in C until Hold
is again false. In states C and D, an asserted Hold signal results in the
machine staying in its present state, while a false Hold results in the

machine advancing to the next state (D and A, respectively) . The state

graph also shows two outputs and their corresponding values for each
state in the machine. One output [COM1] is a combinational signal,

while the other (REGI) is registered. Ifwe map this diagram directly into

an ABEL state machine description, we might write a design file such
as the one shown in Figure 5.8.

As written, this state machine has a peculiar timing characteristic that

needs attention: the registered output REG1 lags the state machine by
a full clock cycle. This behavior is reflected in the test vectors written

in the ABEL source file. In the ninth test vector, REG1 is still false even
though the machine has advanced to state D. Similarly, REG1 remains
true for a full clock cycle in state A when the machine transitions from
state D. This is because the input-forming logic for REGi's D-type

flip-flop relies on the current state as reflected in the Ql and QO state

registers. Since REG1, Ql, and QO are all clocked from a common
source, the current state information is not available to REG I at the

appropriate time.

This situation is corrected by decoding the logic for REG1 one state early.

To do this, we write the equation for REG1 in terms of state transitions,

rather than in terms of current states. This is done by writing the

equation in a WITH block associated with a particular transition

condition. The modified state machine description is shown in Figure

5.9.

5.5 REFERENCES

Data I/O Corporation, ABEL User's Guide, Data I/O, Redmond, WA,
1993.

Pellerin, David and Holley, Michael, Practical Design Using Programma-
ble Logic, Prentice Hall, Englewood Cliffs, NJ, 1991.
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module SM3

title 'State machine output example'
I II llll I II III 1 1 1 II llll II III II III II I II llll II II II II II I II I II I II

II 4-state state machine with state outputs. //

llllllllll lllll lllllllllll II III II III II II I llll I lllllll III II 1

1

Clk,Hold,OE pin; "Inputs
Q1,Q0 pin istype 'reg'; "State bits
REG1 pin istype 'reg'; "Reg output
COMl pin istype 'com'; "Com output

A = 0; B = 1; C = 2; D = 3; "State values

Equations
[REG1,Q0,Q1] .elk = Clk;
[REG1,Q0,Q1] .oe = !OE;

State_Diagram [Q1,Q0]

State A:

REG1 := 0;

COMl 0;

If IHold Then A Else B

State B:

REG1 := 1;

COMl = 1;

Goto C;

State C:

REG1 := 0;

COMl - 0;

If Hold Then C Else D;

State D:

REG1 := 1;

COMl = 1;

If Hold Then D Else A;

Test_Vectors
([Clk,<DE,Hold] -> :[Q1,Q0] REG1.,<:omi] )

[.c. 0, ]
->

I.e., 0, ]
->

i.e.. 0, ] ->

[•c, 0, ] -> '. A ,. r ];

[.c. 0, ]
-> A ,. $ ];

[.c. 0, 1 ]
-> B ,. § l ];

I.e., 0, 1 ]
->

: c ,, 1 t ]f

I.e., 0, 1 ] ->
: c ,, § ];

I.e., 0, ]
-> D , § l ];

I.e., 0, 1 ] -> D ,, 1 # l ];

t.c. 0, 1 ] -> D , 1 / l 1;

[.C.« 0, ]
-> A , 1 / ];

[.c. 0, ] -> A , § ];
End

Figure 5.8 Four-state state machine with state outputs
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module SM4
title 'State machine output example'
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 II 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1

II 4-state state machine with state transition outputs. //

1 1 ii 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1mi ii in ii 1

1

ii 1 1 ii imi 1 1 1 in i in in i in
Clk,Hold,OE pin; "Inputs
Q1,Q0 pin istype ' reg ' ; "State bits
REG1 pin istype 'reg'; "Reg output
COM1 pin istype 'com'

A = 0; B = 1; C = 2; D = 3;

"Com output
"State values

Equations
[REG1,Q0,Q1] .elk = Clk;
[REG1,Q0,Q1] .08 = !0E;

State_Diagram [Q1,Q0]
State A:

State B:

State C:

REG1 := 0;

COM1 = 0;

If !Hold Then A Else B ;

REG1 := 1;

COM1 = 1;

Goto C;

COM1 = 0;

If Hold Then C With REG1 := 0;

Else D With REG1 := 1;

State D:

REG1 : 1;

COM1 = 1;

If Hold Then D Else A;

Test Vectors
([Clk, DE,Hold] -> [Q1,Q0] REGl , COHl ]

)

[.C, 0, ] -> .X. f • A • / .X.];

[.c. 0, ] -> .X. r • A • / .X.];

[.c, 0, ] -> .X. .X., • X.] ;

[.c. 0, ] -> A ,, , ];

[.c, 0, ] -> A ,- , ]|

[.c, 0, 1 ]
->

: B ,, o , 1 1;

[.c, 0, 1 ]
-> C ,, 1 , 1;

I.e., 0, 1 ]
->

: c ,,
o , ];

I.e., 0, ] -> D ,- 1 , 1 1;

I.e., 0, 1 ]
->

: d ,- 1 , 1 1;

I.e., 0, 1 ]
-> D ,- 1 , l If

[.C, 0, ] -> A ,, 1 , If

[.c, 0, ] -> A , o , ];

End

Figure 5.9 Using WITH equations for state diagram outpul
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Basic TTL Logic
Functions
In this and subsequent chapters, we'll examine how ABEL can be used
to describe a variety of small- to medium-sized circuits. These basic

circuits are commonly used in much larger designs, and help to

illustrate a number of important implementation considerations.

Because of the widespread use ofTTL functions, we will begin by taking

a tour through the TTL data book and describing how to create similar

building blocks using ABEL.

6.1 BUFFERS

In a logic design sense, buffers are simply wires that route a set ofinputs

to a set of outputs. In TTL-based designs, buffers are normally used to

provide three-state output capabilities for bus interfaces or other

situations in which there is more than one function that must drive the

same signal (but at different times.) The 74241 device shown in Figure

6.1 is a standard TTL device that provides this function. To provide

protection for TTL outputs that must drive the same bus, the 74241
includes output enable controls for the device outputs. Figure 6.2 is an
example of how these same output enables are described using ABEL.
The design shown uses the .OE dot extensions to describe the output

91
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GA—O^n
A1

A2-

A3-

M~U£l

X1

GBH>
B1

X2 B2

X3 B3-

X4 B4-

Y1

Y2

Y3

Y4

Figure 6.1 74241 Standard logic device

module sn74241
title 'Octal buffer and line driver with 3-state output'

A1,A2,A3,A4 pin;
B1,B2,B3,B4 pin;
GA,GB pin;
Yl,Y2,Y3,Y4 pin istype 'com';
Xl,X2,X3,X4 pin istype 'com';

A = [A4. .Al]

B = [B4. .Bl]

X = [X4. .XI]

Y = [Y4..Y1]

equations
X = A;

X.oe = !GA; "Active Low Enable

Y = B;

Y.oe = GB; "Active High Enable

test_vectors
([GA, A GB, B ] -> [ X , Y ])

[ 1, o 0, ] -> [ .Z. , .Z. ]

;

[ 0, 0, ] -> [ , .Z. ]

;

[ 0, 5 , 0, ] -> [ 5 , .Z.];

I 0,10 ,, 1, ] -> [10 , ];

[ 0,15 1, 5 ] -> [15 , 5 ];

t 1,15 1,10 ] -> [.Z.,10 ];

[ If o 1,15 ] -> [.Z.,15 ];

end

Figure 6.2 74241 Standard logic device described with ABEL
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enables for outputs XI through X4 and Yl through Y4. This design

performs the function of the 7424 1 octal buffer.

To use this design in an actual device, the device chosen must include

output enable features. Virtually all PLDs have outputs with TTL-com-
patible output enable controls, so this simple circuit is widely used (in

combination with other circuitry) in PLD-based designs.

Bus transceivers are frequently designed using three-state output
enables. A bus transceiver is a circuit that provides two-way interface

capabilities between two separate circuits, such as between two circuits

communicating on a data bus. These interfaces are often asynchronous.
To provide this capability, a direction control input is used that specifies

which circuit has "write privilege" to the data bus. The standard TTL
device that provides this function, the 74245, is shown in schematic
form in Figure 6.3. Figure 6.4 is an ABEL design description for a 74245
circuit.

A1-

A3

A4.

A5-

A6.

A7

A8.

A2^

Dt

l>=

k=

Dt
Dd

5vJ

^y
<H
^y

b^

G
B1

B2

B3

B4

B5

B6

B7

B8

Figure 6.3 74245 Bidirectional bus transceiver
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module 8n74245
title 'Octal Bidirectional Bus Transceiver'

G,DIR pin;
Al. .A8 pin istype 'com';
Bl. -B8 pin istype 'com';
A [A8.

.

Al];
B * [B8.

.

Bl]|

equations
A B,

B A;

A.oe = !DIR & !G;

B.oe DIR & IOf

test_vectors
([ G ,DIR, A , B ]

-> A , B ])

[ 1 , , , ] -> . Zt . , .Z.l ;

[ , , .X., Ah00] -> A h00, • X.] ;

[ , , .X., A h55] -> A h55, • X.] ;

t , o , .X., AhAA] -> A hAA, .X.Jj

[ , o , .X., AhFF] -> A hFF, • X.] ;

[ , o , •X., A hF0] -> A hFO, • X . ] ;

[ , 1 , • A i| . Jv J
-> • Z • / X.] ;

[ , 1 ,
Ah00, .X.] -> .X., A h00]

;

[ , 1 ,
Ah55, .X.] -> .X., A h55]

;

[ , 1 ,
AhAA, .X.] -> .X. ,

A hAA]

;

end

Figure 6.4 74245 Bidirectional bus transceiver described with ABEL

6.2 LATCHES

A latch is a circuit that provides data storage. Latches are level sensitive

and hold their current value as long as their control inputs are held at

the latched state. Unlike the flip-flops described in Chapter 5, which
were intended for synchronous control functions and rely on clock edges
for operation, latches are often used in situations where no system clock

is available. In programmable logic applications, latches are often used
to provide buffering of inputs to a synchronous state machine (to meet
setup and hold requirements.)

74373 Octal Latch

Figure 6.5 is a diagram of the 74373 standard logic device. This octal

latch is a common TTL latch that can be described using ABEL. In the

ABEL source file shown in Figure 6.6, the .LE and .OE dot extensions

describe the latch enable and output enable functions for the eight
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Figure 6.5 74373 Standard logic device

Module sn74373
Title 'Octal D-type Transparent Latch'

OC,LE pin;
D7 . .DO pin;

Q7..Q0 pin istype ' reg, buffer '

;

Input = [D7..D0];
Output = [Q7. .QO]

;

Equations
Output : = Input

;

Output. le = !LE;

Output . oe = !OC;

Te8t_Vectors
( [OC ,LE , Input] -> Output

)

[ 1 ,.x. , .X. ]
-> .Z.|

[0,1 ,
Ah00 ]

-> Ah00;

[0,1 ,
Ah55 ]

-> Ah55;

[0,1 ,
AhAA ]

-> AhAA;

[0,1 ,
AhFF ]

-> AhFF;

[0,1 ,
AhA5 ]

-> AhA5;

[0,0 ,
AhA5 ]

-> AhA5;

[0,0 ,
Ah00 ] -> AhA5;

[0,1 ,
Ah22 ]

-> Ah22;
End

Figure 6.6 74373 Octal latch described with

latches (signals QO through Q7). The := assignment operator is used to

describe the data inputs to the latches (inputs DO through DO). When
the input LE is high (as shown in the test vectors), the data applied to

the DO throuth D7 inputs is routed directly to the outputs. When LE is

low, the current data value is latched into QO through Q7, which then
remain in that state regardless ofwhat is applied to the inputs. The OE
input provides a three-state control for all eight latch outputs.
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so 74259 QO

S1 Q1

S2 Q2

D Q3

G 04

CLR-C Q5

Q6

Q7

Figure 6.7 74259 Standard logic device

74259 Addressable Latch

An addressable latch such as the 74259 (shown in Figure 6.7) is a set

of two or more latches that can be individually controlled through the

use ofa multiplexer -like data select input. Figure 6.8 is anABEL source
file describing an 8-bit addressable latch that performs the same
function as a 74259. The design description uses ABEL's .LE dot

extension to specify a latch function (inputs SO through S2) for signals

QO through Q7. This design could be implemented as a part of a larger

circuit in any programmable logic device that features latched outputs

(the Lattice 6001 device is a good example) or in an FPGA such as a
Xilinx LCA.

Addressable latches have four basic modes of operation. The mode of

operation is determined with the CLR and G inputs, as shown in the

following table:

Clr G Mode

H L Data from input routed to selected latch

H H All outputs latched

L L one- to eight-line demultiplexer

L H Clear all latches

The three data select inputs [SO through S2) are used to select which
ofthe eight latches is to be used as the destination for the data appearing

on input D.



6.2 LATCHES 97

Module sn74259
Title '8-bit Addressable Latch'

S2,Sl,S0,G,D,Clr pin;

Q7..Q0 pin istype ' reg, buffer '

;

Output = [Q7. .QO]

;

Select = [S2 . .SO]

;

Equations

when (Select == 0) then
Output := [Q7,Q6,Q5,Q4,Q3,Q2,Q1,D ]

when (Select == 1) then
Output := [Q7,Q6,Q5,Q4,Q3,Q2,D ,Q0]

when (Select ==2) then
Output := [Q7,Q6,Q5,Q4,Q3,D ,Q1,Q0]

when (Select == 3) then
Output := [Q7,Q6,Q5,Q4,D ,Q2,Q1,Q0]

when (Select == 4) then
Output := [Q7,Q6,Q5,D ,Q3, 0.2,0.1,0.0]

when (Select == 5) then
Output := [Q7,Q6,D ,Q4,Q3,Q2,Q1,Q0]

when (Select == 6) then
Output := [Q7, D ,Q5,Q4,Q3,Q2,Q1,Q0]

when (Select == 7) then
Output :- [D ,Q6,Q5,Q4,Q3,Q2,Q1,Q0]

[Q7. .QO] .le = G;

[Q7..Q0].ar = SClr & G;

Test_Vectors
([ G ,Clr,D, Select' -> Output

)

t 1 # ,0, -> *b00000000

[ 1 i ,1, 4 -> AbOOOOOOOO

[ r ,1, 4 -> Ab00010000
[ 1 9 ,1, 4 -> Ab00010000
[ .K. 9 ,1, 7 -> Abl0010000
[ K. 9 ,1, 6 -> Abll010000
[ .K. 9 ,0, 7 -> Ab01010000
[ 1 9 ,0, -> Ab01010000
[ 1 9 ,0, -> *b00000000
[ 9 ,1, -> Ab00000001
[ 9 ,1, 3 -> Ab00001001
[ 9 ,1, 5 -> Ab00101001
[ 9 ,1, 2 -> Ab00101101
[ 9 1 ,1, 2 -> Ab00101101
[ 1 9 1 ,1, 2 -> Ab00101101
[ 1 9 1 ,0, -> Ab00101101

End

Figure 6.8 74259 Addressable latch described with ABEL
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Figure 6.9 74374 Octal register

6.3 REGISTERS

The most commonly used building block for register circuits is the

D-type flip-flop described in Chapter 5. These types of flip-flops are

found in nearly every programmable logic device available, and the

ABEL language has many features that are specialized for them.

74374 Octal Register

The 74374 device shown in figure 6.9 is nearly identical to the 74373
device presented earlier, but features D-type flip-flops instead oflatches.

Figure 6. 10 is an ABEL description of an octal D-type register identical

in operation to the 74374 standard logic device. The .CLK and .OE dot

extensions describe the clock and output enable functions for the eight

flip-flops represented by signals Q0 through Q7. The := assignment
operator is used to describe the data inputs to the flip-flops (inputs DO
through D7). When a positive clock edge occurs on input Clk (as shown
in the test vectors) the data applied to the DO through D7 inputs is

loaded into the flip-flops. The OE input provides a three-state output
for all eight flip-flops.

6.4 SHIFT REGISTERS

Shift registers are data storage and conversion circuits constructed of

sequences of flip-flops. In operation, a shift register collects, stores, and
transfers data serially between adjacent flip-flops in the register. This

shifting of data occurs once each time the shift register is clocked, as

illustrated in Figure 6. 1 1 . In this example, an 8-bit value is shifted from
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Module sn74374
Title 'Octal Edge-Triggered Flip-Flop'

OC,Clk pin;
D7 . .DO pin;
Q7..Q0 pin istype 'reg, buffer'

;

Input = [D7..D0];
Output = [Q7..Q0];

Equations

Output : = Input

;

Output. elk = Clk;
Output . oe = i OC

;

Test_Vectors
( [OC , Clk, Input] -> Output

)

L A # • A • / • A • J -> • Z.;

[ , .C., AhOO ]
-> Ah00;

[ , ,C., Ah55 ] -> Ah55;

[ , .C., AhAA ]
-> AhAA;

[ , .C., AhFF ]
-> AhFF;

[ , .C., AhA5 ]
-> AhA5;

[0,0 ,
Ah00 ]

-> AhA5;

[ ,.C., Ah22 ]
-> Ah22;

End

Figure 6.10 ABEL file for 74374 octal register

the left (most significant bit) to the right (least significant bit), with zeros

being shifted into the leftmost flip-flop. Other types of shift registers

may allow data to be loaded into the register serially (from the left or

right side) or in parallel (all flip-flops at once.) Shift registers are useful

for timing chains and for parallel-to-serial or serial-to-parallel data
conversion.

This example loads a into the leftmost bit of the shift register with
each clock cycle. Depending on the application, a shift register may load

in 0, 1 or a value driven from another portion of the circuit (for serial-

to-parallel data conversion, for example.) It is also possible to feed the
serial data from the opposite end of the shift register, forming a circular

(barrel) shifter. This operation is known as a rotate.

Shift registers can be constructed using D-type flip-flops as shown in

Figure 6.12. This circuit chains eight D-type flip-flops, with the first

flip-flop in the chain being fed by the incoming serial data. The flip-flops

are clocked from a common source, and the parallel data is available at

any time from the Q outputs of the eight flip-flops.

The 74164 standard logic device (shown in Figure 6. 13) is a commonly
used 8-bit serial-to-parallel converter that is built around such a shift
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MSB J.SB
Start:

Clock 1

Clock 2

Clock 3

Clock 4

Clock 5

Clock 6

Clock 7

Clock 8

11010110
01101011
00110101
0001 1 01
00001 1 01
000001 1

0000001

1

00000001
00000000

Figure 6.11 Shift register operation

CLOCK

CLEAR

Figure 6.12 Shifter constructed using D flip-flops

register. Figure 6. 14 is an example of how this standard shift register

circuit can be described using ABEL. The 74 1 64 accepts data (one bit

per clock cycle) into the rightmost flip-flop in an 8-bit chain and then
shifts that data left by one bit with each subsequent clock. The ABEL
source file shown emulates the operation of the standard 74164 paral-

lel-out serial shift register.

Parallel-to-serial shift registers require a means for parallel loading of

data. Figure 6.15 shows a modified version of the 8-bit shift register

that allows data loading for parallel-to-serial applications. In this

design, the parallel load operation is performed asynchronously
through the use of built-in reset and preset features assumed to be
available in the target device. The ShLd input controls whether the data

observed in the data inputs (A through H) should be loaded into the

flip-flops. This design emulates a 74165 device in operation.
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CLOCK > 74164 QA
CLEAR—

C

QB
A QC
B QD

QE
QF
QQ
QH

Figure 6.13 74164 Standard logic device

Module sn74164
Title '8-bit Parallel-Out Serial Shift Register'

A,B pin;
Clear, Clock pin;
QA, QB, QC, QD, QE, QF, QG, QH pin istype ' reg, buf fer '

;

Equations

QA := A & B;

[QH,QG,QF,QE,QD,QC,QB] := [QG,QF,QE, QD,QC,QB,QA]

;

[QH,QG,QF,QE,QD,QC,QB,QA] .elk = Clock;
[QH,QG,QF,QE,QD,QC,QB,QA] . ar = 'Clear;

Test Vectors
( Clock

.C.

.C.

.C.

• C.

• C.

.c.

.c.

.c.

.c.

.c.

.c.

Clear, A, B]

1

1

1

1

1

1

1

1

1

1

It 0]

1, 0]

0, 1]

1, 1]

If 1]

•>

->

->

->

•>

•>

CQA,QB,QC,QD,QE,QF,QG,QH]

)

[ 0, 0, 0, 0, 0, 0, 0, 0]

[ 0, 0, 0, 0, 0, 0, 0, 0]

[ 0, 0, 0, 0, 0, 0, 0, 0]

[ 1, 0, 0, 0, 0, 0, 0, 0]

[ 1, 1, 0, 0, 0, 0, 0, 0]

0, 1] -> [ 0, 1, 1, 0, 0, 0, 0, 0]

1, 1] -> [ 1, 0, 1, 1, 0, 0, 0, 0]

0, 1] -> [ 0, 1, 0, 1, 1, 0, 0, 0]

0, 1] -> [ 0, 0, 1, 0, 1, 1, 0, 0]

0, 1] -> [ 0, 0, 0, 1, 0, 1, 1, 0]

0, 1] -> [ 0, 0, 0, 0, 1, 0, 1, 1]

0, 1] -> [ 0, 0, 0, 0, 0, 0, 0, 0]

End

Figure 6.14 ABEL design description for 74164 shift register

An alternative method of loading data into a shift register is used in the

74 166 device (figure 6.16). TheABEL description for this device is shown
in Figure 6.17. This design, which emulates the 74166 device, uses a
multiplexer (in the form of a WHEN-THEN equation) to route the eight

bits of input data to the shift register when the ShLd input is asserted.
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Module sn74165
Title 'Parallel-Load 8-bit Shift Register, async load'

ShLd, Clklnh , Clk , SER
A,B,C,D,E,F,G,H
QA,QB,QC,QD,QE,QF,QG
QH
QH_

Pin;
pin;
node istype 'reg, buffer'
pin istype 'reg, buffer'
pin istype 'com';

Equations

QH_ = !QH;

[QH,QG,QF,QE,QD,QC,QB,QA] := [QG, QF, QE, QD, QC, QB, QA, SER] ;

[QH,QG,QF,QE,QD,QC,QB,QA] .elk = Clk # Clklnh;

when (IShLd) then

{ [QH,QG,QF,QE,QD,QC,QB,QA] .ar
[QH,QG,QF,QE,QD,QC,QB,QA] . ap

)

! [H,G,F,E,D,C,B,A];
[H,G,F,E,D,C,B,A];

Test_Vectors
( [Clk, Clklnh, ShLd, SER, A, B,C,D,E,F,G,H

,1,0,1,0,1,0,1,1
,1,0,1,0,1,0,1,1
,0,0, 0, 0,0, 0, 0,0
,0,0, 0,0,0, 0, 0,0
,0,0, 0, 0,0, 0, 0,

,0,1,1,1,1,0,0,0
,0,1,1,1,1,1,0,0
,0,1,1,1,1,1,0,0
,0,1,1,1,1,1,0,0
,0,1,1,1,1,1,0,0

[.c, 1 / f

[.c, 1 • 1 9

[.c, 1 9

[.c, 9 1 9

[.c, f 1 t 1

t.c. / 1 9 1

[.c, p 1 9

[ o , / 1 9

[ o , 1 / 1 9

[.c, 1 9 9

End

->[QA,QB,QC,QD,QE,QF,QG,QH,QH_])
->[ 1, 0, 1, 0, 1, 0, 1, 1, ]

->[ 1, 0, 1, 0, 1, 0, 1, 1, ]

->[ 0, 1, 0, 1, 0, 1, 0, 1, ]

->[ 0, 0, 1, 0, 1, 0, 1, 0, 1 ]

->[ 1, 0, 0, 1, 0, 1, 0, 1, ]

->t 1, 1, 0, 0, 1, 0, 1, 0, 1 ]

->[ 0, 1, 1, 0, 0, 1, 0, 1, ]

->[ 0, 1, 1, 0, 0, 1, 0, 1, ]

->[ 0, 0, 1, 1, 0, 0, 1, 0, 1 ]

->[ 0, 1, 1, 1, 1, 1, 0, 0, 1 ]

Figure 6. 15 ABEL source file for 74 165 loadable shifter

This design includes an asynchronous register clear function (the Clr

input) in addition to the parallel load function. To provide exact emu-
lation of the 74166 device, the clock in this design has been ANDed with

a clock inhibit input (Clklnh). Since most PLDs available today do not

allow complex clocking such as this, the clock inhibit feature would
have to be modified or removed before implementing this circuit in a

simple PLD. If the design were being implemented in a more complex
PLD (such as a Mach 215), the clock inhibit feature could be written as

shown.
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OH

Figure 6.16 74166 Standard logic device

Module sn74166
Title 'Parallel-Load 8-bit Shift Register, async clear'

ShLd, Clklnh, Clk, Ser, Clr pin;
A, B,C,D,E,F,G,H pin;
QA, QB, QC, QD, QE, QF, QG node is type ' reg, buffer '

;

QH pin istype 'reg,buffer'

;

Clock node istype 'com';

Equations
Clock - Clk « Clklnh;
When ( ShLd ) Then

[QH,QG,QP,QB,QD,QC,QB,QA] :- [QG,QF,QE,QD,QC,QB,QA, Ser]

;

Else
[QH,QG,QF,QE,QD,QC,QB,QA] := [ H, G, F, E, D, C, B, A];

[QH,QG,QF,QE,QD,QC,QB,QA] .elk Clock;
CQH,QG,QP,QE,QD,QC,QB,QA] .ar = JClr;

'Shift

Load

Test_Vectors
( [Clk, Clklnh

[.Ci 1

!•€.« 1

[.C,
E.C..

I.e.,

I.e.,

t.c,
[ o ,

t o , 1

[.€•• 1

[.c.
[ o ,

Clr ShLd, Ser, A, B, C, D, E, F, G, H

, ,1,0,1,0,1,0,1,1
1 , ,1,0,1,0,1,0,1,1
1 ,0,0,0, 0,0,0,0,0,0
1 , ,0,0,0,0,0,0,0,0
1 , 1 ,0,0,0,0,0,0,0,0
1 , 1 ,0,1,1,1,1,0,0,0
1 , ,0,1,1,1,1,1,0,0
1 , ,0,1,1,1,1,1,0,0
1 , ,0,1,1,1,1,1,0,0

, ,0,1,1,1,1,1,0,0
, ,0,1,1,1,1,1,0,0
, ,0,1,1,1,1,1,0,0

•> [QA, QB, QC, QD, QE, QP, QG, QH]

)

•>[ 1, 0, 1, 0, 1, 0, 1, 1]

•>[ 1, 0, 1, 0, 1, 0, 1, 1]

•>[ 0, 1, 0, 1, 0, 1, 0, 1]

•>[ 0, 0, 1, 0, 1, 0, 1, 0]

>[ 1, 0, 0, 1, 0, 1, 0, 1]

•>[ 1, 1, 0, 0, 1, 0, 1, 0]

->[ 0, 1, 1, 0, 0, 1, 0, 1]

•>[ 0, 1, 1, 0, 0, 1, 0, l]j
•>[ 0, 0, 1, 1, 0, 0, 1, 0]

•>[ 0, 0, 1, 1, 0, 0, 1, 0]

>[ 0, 1, 1, 1, 1, 1, 0, 0]

->[ 0, 0, 0, 0, 0, 0, 0, 0]

End

Figure 6.17 ABEL source file for 74 166 loadable shifter
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IN1

IN2
^N> _ OUT

Figure 6.18 Trivial multiplexer

6.5 MULTIPLEXERS

A multiplexer is a circuit that directs data from two or more sets of

inputs into one set of outputs. The simplest multiplexer can be repre-

sented by a double-pole switch, as shown in Figure 6.18. This multi-

plexer simply selects one of the two inputs and routes it to the output,

based on the state of the switch. More complex multiplexers may have
many possible inputs to be selected from and therefore require a
decoding function to determine which input (or set of inputs) is desired.

Multiplexers are used often in digital circuits and can be thought of as

just another type of logic gate, no less useful than ANDs and ORs. Some
FPGAs (most notably the Actel devices) use multiplexers as building

blocks for larger circuits. On a somewhat larger scale, multiplexers are

used to save wires (or routing channels) when passing data from one
portion of a circuit to another.

The 74153 standard logic device (shown in Figure 6. 19) is a commonly
used multiplexer device. Figure 6.20 is an ABEL description of a
four-into-one multiplexer that has the same function as a 74153
standard logic device. This circuit selects one set of two inputs from the

four possible input sets and routes them to the outputs. The design

description uses ABEL's WHEN-THEN equation language to describe

the multiplexer operation.

6.6 DEMULTIPLEXERS

Demultiplexers are circuits that perform the reverse of a multiplexer

operation. A demultiplexer takes a single set of inputs and routes the

data to a selected set of outputs. The only characteristic of demultiplex-

ers that is different from that of multiplexers is that a demultiplexer

must provide a value (either high or low, 1 or 0) for the outputs that are

not currently selected.
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Figure 6.19 74153 Standard logic device

Module sn74153
Title 'Dual 4-line to 1-line data-selector/multiplexer'

_1C0 , _1C1 , _1C2 , _1C3
_2C0 , _2C1 , _2C2 , _2C3
A,B,G
_1G,_2G
_1Y,_2Y
CO = [_2C0,_1C0]
CI = [_2C1,_1C1]
C2 [_2C2,_1C2]
C3 = [_2C3,_1C3]
G = [ _2G, _1G]
Y = [ _2Y, _1Y]

Pin;
pip-
pin;
pin;
pin is type 'com';

Equations
When ( !B & !A) Then

Y = CO & !G;

Else When (!B & A) Then
Y = CI & !G;

Else When ( B & ja) Then
Y = C2 & !G;

Else When ( B & A) Then
Y = C3 & !G;

Test_Vectors (

[

G, B, A,C0,C1,C2,C3] -> Y)

[ 0, 0, 0, 0, 1, 2, 3] ->

[ 0, 0, 1, 0, 1, 2, 3] -> 1

[ 0, 1, 0, 0, 1, 2, 3] -> 2

t 0, 1, 1, 0, 1, 2, 3] -> 3

[ 1, 1, 1, 3, 3, 3, 3] -> 2

[ 2, 1, 1, 3, 3, 3, 3] -> 1

[ 0, 0, 0, 3, 2, 1, 0] -> 3

[ 0, 0, 1, 3, 2, 1, 0] -> 2

[ 0, 1, 0, 3, 2, 1, 0] -> 1

[ 0, 1, 1, 3, 2, 1, 0] ->

End

Figure 6.20 Dual four- to one-line multiplexer design file
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The 74154 standard logic device is diagrammed in figure 6.21. In this

device, four select inputs decode to provide one of sixteen possible

output routings. The selected output is low whenever both data inputs

Gl and G2 are low. In all other situations the sixteen data outputs are

high. Figure 6.22 is an ABEL source file describing a multiplexer

identical in operation to a 74154 decoder/demultiplexer.

The 74154, like most TTL devices, is active low, meaning that the value

actually observed on the output pins is reversed from what one might
expect when thinking about the logic function being implemented. To
reflect this, the ABEL design uses an inversion of the Output set to allow

values to be entered in a more natural way in the truth table that follows.

A

B

C

D

G1

G2

74154 — 00

— ol

02

03

— o4

— °5

— 06

— o7

— 08

D— 09

o10

011

— 012

— 013

0—o14
— o15

Figure 6.21 74154 Standard logic device
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Module sn74154
Title '4-line to 16-line decoder/demultiplexer'

A,B,C,D
G1_,G2_
o0.

.

ol5

Pin;
pin;
pin istype com'

Select = [D,C,B,A] ;

Output = ![ol5..o0];

Truth_Table ( Gl_

1

.X.

Test_Vectors ( Gl_
1

.X.

G2_, Select] -> Output)
.X., .X. ]

-> Ah0000;
1 , .X. ]

-> Ah0000;
, ] -> Ah0001;
, 1 ]

-> Ah0002;
o , 2 ] -> Ah0004;
o , 3 ] -> Ah0008;

, 4 ]
-> Ah0010;

, 5 ]
-> Ah0020;

, 6 ]
-> Ah0040;

, 7 ] -> Ah0080;
, 8 ]

-> Ah0100;
o , 9 ]

-> Ah0200;
, 10 ] -> Ah0400;
, 11 ]

-> Ah0800;
, 12 ] -> Ahl000;
, 13 ] -> Ah2000;
, 14 ]

-> Ah4000;
, 15 ] -> Ah8000;

,G2_, Select ]
-> Output

)

/ -X., .X. ]
-> Ah0000;

, 1 , • X. ]
-> Ah0000;

, o , ]
-> Ah0001;

, o , 1 ]
-> Ah0002;

, , 2 ]
-> Ah0004;

/ o , 3 ]
-> Ah0008;

, o
,

4 ]
-> Ah0010;

, o
,

5 ]
-> Ah0020;

, o , 6 ]
-> Ah0040;

, , 7 ]
-> A h0080;

, o , 8 ]
-> Ah0100;

, o , 9 ]
-> Ah0200;

, o , 10 ]
-> Ah0400;

, o , 11 ]
-> Ah0800;

, o , 12 ]
-> Ahl000;

, o , 13 ]
-> Ah2000;

, o
,

14 ]
-> Ah4000;

, o , 15 ]
-> Ah8000;

End

Figure 6.22 ABEL file for 74 154 demultiplexer
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Counters
Many of the most common sequential applications are based on count-

ers. Since most target architectures (including simple PLDs and most
FPGAs) are not well optimized for counter applications, it's important
to understand how a counter can be most efficiently implemented, given

various constraints.

7.1 T FLIP-FLOP COUNTERS

Users of standard logic devices are probably most familiar with counters
constructed out of T flip-flops. T flip-flops are well suited to counters

and to many other types of synchronous state machines. Figure 7.

1

shows the bit patterns that are observed on the outputs of a 4-bit up
counter for the 16 states of its operation. These binary values corre-

spond to the decimal values through 15. Using flip-flops, such a
counter can be implemented in a variety of ways. Users of discrete TTL
devices will usually build such a counter using T flip-flops in a circuit

such as the one shown in Figure 7.2. This is the simplest implementa-
tion of a counter and takes advantage of the edge-triggered clock

available in each flip-flop. In a ripple counter such as this, each flip-flop

is clocked at a rate of one-half the rate of the previous flip-flop. This is

a reflection of the behavior seen in the bit values presented in Figure

7.1: each bit position toggles when its less-significant neighbor transi-

tions from 1 to 0.

109
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Binary Decimal

0000
0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 10

1011 11

1100 12

1101 13

1110 14

1111 15

Figure 7.1 Bit values of a four-t

Clk-

vuut
T Q

>CLK—>»—
VccT T Q

>CLK

VccT T Q

>CLK

VccT T Q

>CLK

•Q0

•Q1

•Q2

Q3

Figure 7.2 Four-bit T flip-flop counter
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There are two problems with a counter such as this. First, the current
state of the counter can't be determined at any point in time. This is

fine if the purpose of the counter is to divide a frequency, but is not
acceptable if the counter is being used to control a state machine, to

cycle through memory addresses, or for some other application where
the actual counter value is significant. Second, the counter can't operate

at high speeds due to the large number of propagation delays. Further-

more, if we wish to use one or more PLDs to implement the counter
circuit, we find that this circuit isn't appropriate for the average PLD,
since most PLDs have flip-flops that are clocked from a common source
(this may be a good circuit to consider, however, if the application is

intended for an FPGA).

Look-ahead Counters

To implement this counter circuit in a PLD or other target architecture

with constrained clock sources, we'll need to implement it using a
different scheme, such as that shown in Figure 7.3.

This 8-bit counter circuit doesn't require independently clocked flip-

flops or multiple levels of logic to be implemented, and can therefore be
implemented with commonly clocked T flip-flops and no additional

outputs. In this implementation of the counter, each succeeding bit of

the counter is toggled whenever all the preceding bits are true (as seen

in Figure 7.1). Thus, each of the counter's flip-flops requires just one
product term with n inputs, where n is the number of less significant

bits. The least significant bit of the counter is tied directly to VCc- The
8-bit counter can be described with the following ABEL equations for

the flip-flops' T inputs:

Q7.T = Q6 & Q5 & Q4 & Q3 & Q2 & Ql & QO;

Q6.T = Q5 & Q4 & Q3 & Q2 & Ql & QO;

Q5.T = Q4 & Q3 & Q2 & Ql & QO;

Q4.T = Q3 & Q2 & Ql & QO;

Q3.T = Q2 & Ql & QO;

Q2.T = Ql & QO;

Ql.T = QO;

QO.T = 1;

The T inputs to the counter's flip-flops are indicated through the use of

dot extension suffixes appended to the name of the design's outputs.
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Vcc

Figure 7.3 Eight-bit look-ahead cany counter
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7.2 D FLIP-FLOP COUNTERS

The previous counter circuit can be implemented in a PLD with T
flip-flops, but these devices are typically more expensive that the simpler

PALs with D flip-flops. How can a design that is described most naturally

with T flip-flops be implemented in one of the lower-cost PLDs that has
only D flip-flops? The easiest way is to convert the circuit to a D flip-flop

implementation by using the flip-flop emulation technique discussed in

Chapter 4, where we showed that, with the simple addition of an XOR
gate, a D flip-flop can be made to function as aTflip-flop, and aT flip-flop

can be made to function as a D flip-flop.

To implement the eight-bit counter in a device with D flip-flops, we XOR
the counter equations with the fed-back flip-flop outputs:

QO;Q7 = Q7 $ Q6 & Q5 & Q4 & Q3 & Q2 & Ql &

Q6 = Q6 $ Q5 & Q4 & Q3 & Q2 & Ql & QO;

Q5 = Q5 $ Q4 & Q3 & Q2 & Ql & QO;

Q4 = Q4 $ Q3 & Q2 & Ql & QO;

Q3 = Q3 $ Q2 & Ql & QO;

Q2 = Q2 $ Ql & QO;

Ql - Ql $ QO;

QO = QO $ If

Notice that we haven't used any dot extensions in these equations. Since

the output of a D flip-flop follows the signal values applied to the

flip-flop's input, there is no distinction required between the D flip-flop

input and the corresponding output, and we can describe the counter

using a pin-to-pin point of view. The := assignment operator specifies

to ABEL that we want registered outputs.

These equations can be implemented directly in a device with XOR
gates, such as the 20X8 PAL, or implemented in a PAL device without

XOR gates, such as the 16R8. In the latter case, the XOR operators are

converted into sum-of-products logic. The large number of product

terms required to implement an 8-bit counter (the most significant bit

of an n-bit counter will always require at least n product terms) may
preclude the use of a simple PAL device if additional logic is required

for reset or data-loading purposes.

Using High-level Equations for Counters

In ABEL, counters for D or T flip-flops can be written using high-level

equations. For example, the eight equations shown previously for D
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flip-flops could be replaced by the following set declaration and high-

level equation:

Declarations

Count = [Q7. .QO]

;

Equations

Count := Count + 1;

When writing high-level equations such as this, it's actually more
convenient to think about the counter's behavior in terms of pin-to-pin

behavior. This means that a D flip-flop representation is more natural

than the T flip-flop representation.

The most popular registered PLDs and FPGAs feature D flip-flops. To
some extent this simplifies the job of writing equations, since the

equations required to control a D flip-flop's D input are the same
equations that you would expect to write if you wanted to describe the

behavior ofyour design at the device outputs. For PLDs with D flip-flops,

you can in most cases ignore the existence of the flip-flops when writing

design equations. There are many exceptions to this, however, and later

we'll cover these situations in some detail.

If we wish to implement this simple counter using T flip-flops, we can
convert the design back to a T representation with another XOR,
resulting in the high-level equation

Count . T = Count $ ( Count + 1 )

;

7.3 LOADABLE COUNTERS

Figure 7.4 shows a complete ABEL design that utilizes high-level

equations and explicit flip-flop conversion to create a more complex up
counter. This counter features synchronous hold, load, and clear

inputs.

The ABEL design includes two equations: the counter equation already

described and an additional equation for the clock input to the design's

flip-flops. The .CLK dot extension is used to refer to the clock inputs to

the design's flip-flops (07 through QO).



7.4 COUNTER RESET SCHEMES 115

module DtoT
title 'Octal counter with load and clear'

DO. .D7 pin;
Q7. .QO pin istype ' reg_T '

;

CLK, 10, 11 pin;

Data = [D7. .DO]

;

Count = [Q7..Q0];
Mode = [11,10]
Clear = [ 0, 0],

Hold = [ 0, 1],

Load s [ 1, 0],

Inc [ 1, 1],

X,C = • X m § • C •
|

equations

Count. T = ( (Count.

q

+ 1) & (Mode == Inc)

# (Count.

q

) & (Mode == Hold)
# (Data ) & (Mode == Load)
# (0 ) & (Mode — Clear))

$ Count. q;

Count. C = CLK;

test_vectors ( CLK, Mode , Data]
C , Load r 1 ]

C , Inc r X ]

c , Inc - X 1

c , Inc , x ]

c , Inc t x ]

c , Load - 3 ]

c , Inc X ]

c ,Load 7 ]

c , Inc X ]

c , Hold x ]

c , Clear, X ]

c , Load AhFE]

c , Inc X ]

c , Inc , x ]

end

•> Count)
->

->

->

->

->

->

->

->

->

->

->

->

->

->

1

2

3

4

5

3

4

7

8

8

KhFE
vhFF
*h00

Figure 7.4 D to T flip-flop conversion using XOR equation

7.4 COUNTER RESET SCHEMES

A variety of methods can be used to reset a counter to an initial value,

and the target architecture is again an important consideration when
choosing the most efficient scheme. If you are using a device with more
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module clear
title 'Synchronous clear in a device with inverted outputs'

Q7..Q0 pin is type 'reg, invert ' ;

Clk, Clear, OE pin;

Delay = [Q7. .QO]

;

equations

Delay := (Delay. fb + 1) # Clear;

Delay. elk = Clk;
Delay. oe = !0E;

[Clk,Clear, OE] -> Delay)
[.c. 1 , 0] -> 255; "Registers low
[•e.i , 0] -> 0;

[.c, , 0] -> l;

[.c, , 0] -> 2;

[•c, . 0] -> 3;

t.c, , 0] -> 4;

[.c, 1 , 0] -> 255;
end

Figure 7.5 Synchronous clear with inverted output

restrictive reset and preset options, then you must consider the impact
of different reset strategies.

The ABEL design files in Figures 7.5 and 7.6 show two different methods
for counter initialization using a 16R8 PAL-type device. These two
methods result in different reset states and require different amounts
of logic. The first method doesn't require any additional product terms
to be implemented, while the second method will consume one addi-

tional product term for each output of the design. This is because the

first method exploits the inherent default state of the D flip-flop.

Although this default flip-flop state can be used to simplify the design

ofa circuit requiring a reset state, the specific configuration of the target

architecture will affect the operation of the resulting circuit.

As a general rule, devices such as the 16R8 that have D-type flip-flops

and fixed output inversions will require one additional product term for

each output if a reset to an all-low state is desired, while no additional

product terms will be required for reset to the state in which all outputs

are high.
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module set
title 'Synchronous reset in a device with inverted outputs'

Q7..Q0 pin istype 'reg, invert '

;

Clk, Clear, OE pin;

Delay = [Q7..Q0];

equations

Delay := (Delay. fb + 1) & ! Clear;

Delay. elk = Clk;
Delay. oe = !OE;

test_vectors( [Clk, Clear, OE] -> Delay)
[.c, 1 , 0] ->

[.c. , 0] -> 1

I.e., , 0] -> 2

[.c, , 0] -> 3

[.c, , 0] -> 4

[.c, 1 , 0] ->

end

Figure 7.6 D flip-flop synchronous reset for a device with inverted outputs

7.5 POLARITY CONSIDERATIONS

Because of the many different possible configurations for registered

outputs, it's difficult to design efficient sequential circuits such as
counters without being aware of the constraints of the selected target

architecture. Differences in architectures from one type of device to

another can have profound effects on the behavior of seemingly simple

circuits. This is particularly true of devices featuring programmable
output inversion.

First, consider the problem of register preset and reset. If your design

requires the use of a flip-flop preset or reset feature, you will need to

determine whether the required features exist in the device chosen and
how the configuration of the device outputs will affect the operation of

those features. As an example, Figure 7.7 shows an output macrocell

from a 22V 10 PAL device.

In a 22V 10, the polarity for each registered output is controlled by
selecting or bypassing an inverter located between the Q output of the

D flip-flop and its associated output pin. This means that there may or

may not be an inversion between the outputs of the flip-flops and the

corresponding device output. The result is that the behavior of the
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Figure 7.7 22V10 output macrocell

asynchronous reset and synchronous preset features will be different

depending on whether positive or negative polarity is selected for the

programmable inversion. If the reset and preset were both synchronous
or both asynchronous, this difference in behavior might be accommo-
dated by simply swapping the reset and preset logic, but this isn't

possible in the 22V10. Even if such swapping is possible in your design,

the nature of the preset and reset places limitations on how much
benefit can be gained from this, since all the flip-flops in a 22V10 are

preset and reset from common product terms.

In many devices, the programmable inverter is located before the

flip-flops, on the outputs of the OR gates. This simplifies the use of

programmable polarity. In all fairness, however, the 22V10's output
macrocell can be used to advantage for resetting a state machine to an
arbitrary default state. To design a circuit that will reset to an arbitrarily

encoded default state, choose a sequence of output polarity configura-

tions that will result in the desired state encoding on the device outputs
when the global preset or reset is activated.
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7.6 SR FLIP-FLOP COUNTERS

We have seen how counters can be implemented using D andT flip-flops.

These two types of flip-flops are straightforward to use for counter
applications and lend themselves well to high-level design description

methods. Designing counters for other flip-flop types, most notably SR
flip-flops, is somewhat more complex. To design a counter that utilizes

SR flip-flops, we must first analyze the design requirements by once
again examining the bit patterns presented previously in Figure 7. 1

.

When we examined these bit values to determine aT flip-flop implemen-
tation, we were attempting to determine the conditions that would
indicate when each bit of the counter should toggle. This thinking

reflected the behavior of the T flip-flop. The behavior of an SR flip-flop

requires us to think about our counter in yet another way.

When we look at the counter's bit patterns again with SR flip-flops in

mind, we are looking for those conditions under which each bit should

be turned on (set) or turned off (reset). The required circuitry for each
bit of the counter can be generalized: for any given clock cycle, each bit

of the counter is set if it was off in the previous state and all lower-order

(less significant) bits were on. Similarly, each bit is reset whenever the

next higher -order (more significant) bit is turned on, or when the bit

itself and all lower-order bits were previously on.

The circuit that implements this concept for a four -bit counter is shown
in Figure 7.8. This circuit requires a total of five distinct product terms
when implemented in a product term-sharing PLD such as the PLS105.
Figure 7.9 lists the Boolean equations that implement this counter

circuit. The design can also be expressed in ABEL as shown in Figure

7. 10. This design description enumerates all the possible counter values

and, for each counter value, sets or resets the individual counter

outputs based on the required next counter value. Which design

description method to use is purely a matter of personal preference.

7.7 UP AND DOWN COUNTERS

The previous counter designs were all examples of up counters —
counters that increment their values with each clock cycle. In PLDs with

negative polarity outputs and D flip-flops, you will find that it's usually

more efficient to implement a delay or event counter circuit by using a

down counter (the 16R8, for example, is a natural device for down
counting, but is rather inefficient for up counting). As Figure 7.11

illustrates, converting an up counter to a down counter is a simple
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Figure 7.8 Four-bit SR flip-flop counter circuit

QO.S 1Q0;

QO.R « JQ3 & Q2 & Ql & QO

* Q3 & Q2 6 Ql 6 QO

* !Q2 & Ql & QO

* 1Q1 & QO;

Ql.S !Q1 & QO;

Ql.R = !Q3 & Q2 & Ql & PO

* Q3 & Q2 & Ql & QO

* 1Q2&Q1&Q0;

Q2.S !Q2 k Ql 6 QO;

Q2.R - !Q3 & Q2 6 Ql & QO

* Ql ft Q2 & Ql & QO;

Q3.S * !Q3 & Q2 & Ql & QO;

Q3.R = Q3 & Q2 & Ql & QO;

Figure 7.9 SR flip-flop counter equations
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module countsr

Clk, PR pin;
Q3..Q0 pin istype 'reg_SR, buffer';

Q = [Q3..Q0];

equations

Q.AP = PR; -As;ynchronc>us Preset
Q.C Clk;

QO.S] >• (Q 0);

[ Ql.S ,Q0.R] «• (Q « 1);

QO.S] >• (Q « 2);

[ Q2.S,Q1.R r Q0.R] »« (Q «= 3);
QO.S] =« (Q a 4);

[ Ql-S ,Q0.R] «« (Q ssx 5);
QO.S] •• (Q mzt 6);

[Q3.S,Q2.R,Q1.R ,Q0.R] •« (Q « 7);
QO.S] >' (Q » 8);

[ Ql.S ,Q0.R] .' (Q - 9);
QO.S] >' (Q as 10);

[ Q2.S,Q1.R ,Q0.R] •' (Q = = ID;
QO.S] >« (Q SB 12);

[ Ql.S r Q0.R] • (Q « 13);
QO.S] > (Q == 14);

[Q3.R,Q2.R,Q1.R r Q0.R] •' (Q 15);

_vectors ( [Clk rPR] -> Q)

[ 1 r 1] -> 15;

[ 1 r 0] -> 15;

[.c. r 0] -> 0;

[.c. r 0] -> 1;

[.c. , 0] -> 2;

[.c. , 0] -> 3;

t.c. , 0] -> 4;

[.e. r 0] -> 5;

t.c. r 0] -> 6;

[.c. , 0] -> 7;

[.c. , 0] -> 8;

[.c. , 0] -> 9;

[.c. r 0] -> 10;

[.e. r 0] -> 11;

[.c. , 0] -> 12;

[.c. , 0] -> 13;

[.c. , 0] -> 14;

[.c. , 0] -> 15;

[.c. , 0] -> 0;

[.o. , 0] -> l;

[ .c. , 0] -> 2;

end

Figure 7.10 Four-bit SR counter design file
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Decimal Bin*

0000 1111 15

0001 1 1110 14
0010 2 1101 13

0011 3 1100 12

0100 4 1011 11

0101 5 1010 10

0110 6 1001 9

0111 7 1000 8

1000 8 0111 7
1001 9 0110 6

1010 10 0101 5

1011 11 0100 4

1100 12 0011 3
1101 13 0010 2

1110 14 0001 1

1111 15 0000

Figure 7.11 Comparison of up-•down counter values

matter of inverting the counter circuit's outputs. The initial state then
becomes the one's complement of the original initial state, and the

counter sequences down, rather than up.

For further reductions in logic, you might find that inverting just some
ofthe counter's outputs will result in the most efficient implementation.

This is most easily done using target architectures that feature pro-

grammable polarity for all outputs. Ifyour counter circuit will be feeding

the inputs to other devices or design modules, you can often simply
invert the active level (or sense) of the counter outputs and then reinvert

them at the other device's inputs, as illustrated in Figure 7. 12.

7.8 ARBITRARY LENGTH COUNTERS

Counters are sometimes required that are of an arbitrary length. Using
high-level equations, such a counter can be easily developed. For

example, if a 1 1 1 -state counter is required that counts from zero to a
value of 1 10, we could write a high-level equation of the form

Count := (Count + 1) & (Count <= 110) & IClr;
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Figure 7.12 Inverting circuit active levels

This equation accurately describes all 1-state counter, but as written,

it produces sum of products equations that are larger than necessary,

too large, in fact, to fit in simple PAL-type devices.

When D flip-flops are used, a counter with no terminating value (a

256-state eight-bit counter, for example) will always require n product
terms for the most significant bit of the counter, where n is the number
of counter bits. For an arbitrary length counter, however, the size of the

minimized equations depends on the specified terminating value. To get

this counter to fit into typical programmable devices, some design

changes are required.

One possible approach is to design the counter with a short count
comparator by using a device with a synchronous reset term. The PAL
22V10 is one such device. This method is shown in the ABEL source

file of figure 7. 13. An equation is written for the synchronous preset

term of the 22V10 that compares the counter value with the desired

terminating value. This design requires that the 22V10's configurable

outputs all have an inversion after the register so thatwhen the registers

are preset, the desired counter reset value (all low) will appear on the

outputs. This is ensured by the use of an ISTYPE statement. In the

absence ofthe ISTYPE 'invert' statement, ABELwould choose the output
polarity that implemented the design equations most efficiently, and
this polarity may or may not be the polarity required for correct

operation of the counter's reset function.

If you want to use a device without a preset feature, you can implement
the short count circuit by writing a short count comparator equation
for an unused output and routing that output back into the counter
equations. The ABEL design shown in Figure 7.14 uses this method to

implement the design in a 20V8 GAL device. The architecture of the GAL
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module cntllla
title 'Arbitrary length counter,

countlll device 'P22V10';

to 110'

Clk, Clr pin 1,2;
Q6..Q0 pin 16,17,18,19,20,21,22;
Q6..Q0 is type 'invert';

Count = [Q6. . Q0]

;

equations

Count := (Count. fb + 1) & !Clr;
Count. sp = (Count. fb == 110); "Synchronous preset term
Count. elk = Clk;

[Clk, Clr] -> Count

)

[.c, 1 ] -> 0;

[.c, ] -> l;

[.c, ] -> 2;

[.c, ] -> 3;

[.c, ] -> 4;

[.c, ] -> 5;

[•c, 1 ] -> 0;

©const i=l; ©repeat 107 {

[.c, ] -> 0expr i;; ©const i=i + l; }

[.c, ] -> 10 8;

[.c, ] -> 109;

[.c, ] -> 110;

[.c, ] -> 0;

[•c, ] -> l;

[.c, ] -> 2;

end

Figure 7.13 111 -State short counter for a 22V1 or similar device

allows seven of its eight outputs to be configured with D flip-flops while

one of the outputs is combinational.

To use an even simpler device, you can route the short count comparator
to a registered output and decode the counter's terminal count one state

earlier. This is done in the design shown in Figure 7.15. This design

implements the short counter in a 20R8 PAL that has eight D outputs

and no combinational outputs.
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module cntlllb
title 'Arbitrary length counter, to 110'

count 111 device 'P20V8';

Clk,Clr, Short pin 1,2,15;
Q6. .Q0 pin 16. .22;

Count = [Q6..Q0];

eolations

Count i = (Count .fb + 1) & ! Short

;

Short = (Count fb = =• 110) # Clr; 'Synchronous preset term
Count. elk = Clk;

test_vectors ([Clk, Clr] -> Count)
[.c, 1 ]

->

[.«.. ] -> 1

[.c, ] -> 2

I.e.. o ]
-> 3

[.c, ] -> 4

[.c, ] -> 5

[.c, 1 ]
->

©const i=l; ©repeat 107 {

[.c, ] -> @expr in ©const i=i + l; }

end

[•c, ] -> 108;
[.c, ] -> 10 9;

[.c, ] -> 110;
[.c, ] -> 0;

[.c. ] -> l;

[.c, ] -> 2;

Figure 7.14 111 -State short counter for a device with no reset feature
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module cntlllc
title 'Arbitrary length counter, to 110'

countlll device 'P20R8';

Clk,Clr, Short pin 1,2,15;
Q6..Q0 pin 16.. 22;

Count = [Q6..Q0];

equations

Count : (Count. fb + 1) & ! Short. fb;

Short := (Count. fb »= 109) # Clr;
[Count, Short] .elk = Clk;

'Synchronous preset term

test_vectors ([Clk, Clr] -> Count)

I.e., l ]
-> 0;

I.e., ] -> 0;

I.e., ] -> 1;

I.e., ] -> 2

1

I.e., ] -> 3;

I.e., ] -> 4;

I.e., ] -> 5;

I.e., 1 ]
-> 6;

I.e., ] -> 0;

'Extra cycle in because of short

"Clear is delayed because of short

©const i"lj ©repeat 107 {

[.c, ] -> 0expr i;; ©const i=i+l;

end

t.c. ] -> 108;

[.c, ] -> 109;

t.c. ] -> 110;

[.c, ] -> 0;

[.C, ] -> 1;

[.c, ] -> 2;

Figure 7.15 1 10-State counter for a simple 20R8 PAL device
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7.9 CHAINED COUNTERS

If a larger counter is required (one that counts to a value greater than
can be accommodated in the target architecture), multiple counters of

various terminating values can be cascaded by providing carry signals

between succeeding counter blocks. When breaking up a large counter
in this way, the optimal size ofthe individual counter elements will differ

depending on the target architecture.

Using ©CARRY to Break up Counters

ABEL's ©CARRY directive can be used to specify counter chains.

©CARRY instructs the ABEL compiler to break counters into smaller

segments of a specified width while preserving carry logic on automat-
ically generated intermediate nodes.

Using ©CARRY, it is possible to describe extremely large counter
functions. For example, the design shown in figure 7. 16 uses ©CARRY
to break up a large (36-bit) counter into 18 smaller 2-bit counters. The
value specified in the ©CARRY directive can be selected to best match
the requirements of the target device architecture. For most PLDs, a
value ofbetween 2 and 8 is usually appropriate. For devices with smaller

logic blocks, such as FPGAs, a smaller value (4 or less) is probably more
appropriate.

7.10 WAVEFORM GENERATOR

One common application of counters is in the construction ofwaveform
generator circuits. A simple waveform generator consists of a counter

and waveform decoding logic, as shown in the block diagram of Figure

7.17.

When a repeating pattern of arbitrarywaveforms such as the one shown
in figure 7.18 is required, you must first determine the number of

counter states that will be required to accurately produce all the desired

waveform events. The counter's terminal value depends on how many
events there are in the waveform, as well as when the events are to occur

in relation to clock edges that occur as a result ofdifferent possible clock

speeds. In our sample waveform, the pattern repeats after just twelve

clock cycles, so a counter that increments (or decrements) through
twelve states is sufficient.
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module cnt36bit
title '36-bit counter described using 9CARRY'

Reset, Clock pin;
Hold, Load pin;
D35 . .DO pin;
Q35..Q0 pin istype 'reg, buffer'

;

Data = [D35..D0];
Count = [Q35. .QO]

;

equations
0CARRY 2;

Count . CLK
Count .CLR

Clock;
Reset;

Count := ( Count. FB + 1) & !Hold & ! Load
# Count. FB & Hold & ! Load
# Data & Load;

test_vectors ( [Clock, Reset, Hold, Load, Data ] - > Count

)

[

<?const i = 1;

^repeat 100 { [

©const i = i+1;

}

1 , , ,

, , ,

•x. ]-> Ah000000000;

.x . ] - > <?expr i ;

;

[ .c. 9 9 l 4
1

KbFFFFFFFF9] -> AhFFFFFFFF9
[ • c. 9 9 / .X. ]-> AhFFFFFFFFA
[ .c. 9 r 9 .X. ]-> AhFFFFFFFFB
[ .c. 9 § § .X. ]-> AhFFFFFFFFC
t .c. 9 $ 9 .X. ]-> AhFFFFFFFFD
[ .c. 9 i 9 .X. ]-> AhFFFFFFFFE
[ .c. 9 i 9 .X. ]-> AhFFFFFFFFF
[ .c. 9 t 9 .X. ]-> Ah000000000
[ .c. 9 i 9 .X. ]-> Ah000000001
[ .c. 9 1 § 9 .X. ]-> Ah000000001

end

Figure 7.16 Using the ©CARRY directive to create an adder chain
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WAVEFORM
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COUNTER OUTPUTS

M

INPUTS CONTROL
LOGIC

Figure 7.17 Waveform generator block diagram

Analyzing the required events, we find that signal A should go high after

clock cycle one, and low after clock cycle three. Signal B goes high after

cycle two, low after cycle five, and high again for one clock cycle during

cycle nine.

We have described the waveform in terms of transitions, and this

description maps naturally into an SR flip-flop implementation. If we
target this design to a device that features SR flip-flops, we can easily

implement this design. Figure 7. 19 lists the ABEL design description

for the waveform generator.

This design assumes buried registers (indicated by the NODE declara-

tions) for the counter function and uses separate registers associated

with output pins for the waveform decoding function. The counter

segment of the design is described in a manner similar to the earlier SR
flip-flop counter example. A separate combinational output is used to

provide the short count function required for the 12-state counter.

clock mimimirruiJuTJTJiJii^^
COUNT 10 I 011 I2I3I4I5I6I7I8I9I10I11I0I1 I 2 I 3 I 4 I 5 I 6 I

START
I

n
A J l_ i i

B I
I

i i

Figure 7.18 Sample waveform
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module WAVE
title 'Waveform Generator'

wave
Clk, Start, PR
A,B
Q3,Q2,Q1,Q0
COMP

device 'F105';
pin 1, 8,19;
pin 10,11
node 40,39,38,37

istype 'reg_SR';
istype 'reg_SR';

node 49 istype 'com';

Q = [Q3,Q2,Q1,Q0] ; "Counter Registers

ecjuations

[Q,A,B] .R JCOMP;

[Q,A,B] .C - Clk;
[Q,A,B] .AP = PR;

"Counter Equations.

'Clear Illegal states

[COMP, Q0.8] = (Q == 0) & Start; n to 1

[COMP, Q1.S,Q0.R] = (Q == 1) & Start; n 1 to 2

[COMP, Q0.S] = (Q == 2) & Start; K 2 to 3

[COMP, Q2.S,Q1.R,Q0.R] (Q = = 3) & Start; H 3 to 4

[COMP, Q0.S] = (Q SB 4) & Start; n 4 to 5

[COMP, Q1.S,Q0.R] = (Q = = 5) & Start; n 5 to 6

[COMP, Q0.S] = (Q = = 6) & Start; n 6 to 7

[COMP,Q3 .a rQ2.R,Ql.R,Q0.R] = (Q U 7) & Start; n 7 to 8

[COMP, Q0.S] = (Q == 8) & Start; n 8 to 9

[COMP, Q1.S,Q0.R] = (Q « 9) & Start; n 9 to 10

[COMP, 00.8] = (Q == 10) & Start; n 10 to 11

[COMP,Q3 .R ,Q2.R,Q1.R,Q0.R] = (0 == 11) & Start; n 11 to
"Output Waveform equations. . .

A.S
A.R
B.S
B.R
B.S
B.R

(Q~l
(Q==3

c«—

a

(Q==5

(Q= = 8

(Q—9

test vectors (

&

&

&

&

&

&

Clk

1

1

• C.

.c.

.c.

.c.

.c.

• C.

.c.

.c.

.c.

.c.

.c.

.c.

.c.

.c.

.c.

Start;
Start;
Start;
Start;
Start;
Start;

PR, Start -> [

0, ->
[

1, ->
[

0, -> [

0, ->
[

0, -> [

0, ->
[

0, -> [

0, -> [

0, -> [

0, -> [

0, ->
[

0, -> [

0, ->
[

0, -> [

0, ->
[

0, -> [

0, -> [

0, ->
[

Q,A,B])
i A i| i A § A * J /

15,1,1]
15,1,1]
0,0,0]
0,0,0]
0,0,0]
1,0,0]
2,1,0]
3,1,1]
4,0,1]
5,0,1]
6,0,0]
7,0,0]
8,0,0]
9,0,1];

10,0,0];
11,0,0];
0,0,0];

Preset high
Preset low

end

Figure 7.19 Waveform generator design file
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The waveform decoding is done separately, and uses simple equality

comparisons to trigger the required output events. Separating the

counter logic from the waveform generation logic in this way makes it

easier to modify the waveform generator if needed.

7.11 REFERENCES

Data I/O Corporation, ABEL User's Guide, Data I/O, Redmond, WA,
1993.

Data I/O Corporation, Polarity inABEL-FPGA (application note), Data
I/O Corporation, Redmond, WA, 1992.

Pellerin, David and Michael Holley, PracticalDesign Using Programmable
Logic, Prentice Hall, Englewood Cliffs, NJ, 1991.





D D D

D

Decoders and
Comparators

8.1 ADDRESS DECODERS

Address decoders are perhaps the most common application for small

PLDs and are an important part of many larger circuits. A decoder is a
circuit that translates nbinary inputs into one ofup to 2™ outputs. (Code
converter circuits that translate binary input data into a pattern of

multiple outputs are also sometimes referred to as decoders.) If the

decoding function results in the same output for multiple input combi-
nations (either by design or due to don't-care input combinations), the

number of outputs required will be less than 2".

An address decoder is a specialized decoder that performs a magnitude
comparison function to determine the proper decoding of its inputs into

a relatively small number of outputs. The typical use for such a circuit

is in enabling different sections of memory based on the memory
address observed on an address bus.

The ABEL source file shown in Figure 8. 1 describes an address decoder
that monitors the most significant seven bits of a 16-bit address bus
and enables one of four different blocks of memory based on the range
of the address.

In this design, the declarations for the outputs (SRAM, PORT, UART,
and PROM) are made with an active-low indication (the ! operator applied

133
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module decode
title 'Address decoder example'

!SRAM, IPORT,

JUART, !PROM
A15. .A9

pin istype 'com'

pin;

H,L,X = 1,0, .x.

;

Address - [A15..A9,X, X,X,X,X, X,X,X,X];

equations

SRAM = (Address < Ah8000);
PORT = (Address >= Ah8000)
UART = (Address > = A h82 00)

PROM = (Address >= Ah8400);

test_vectors (

& (Address < Ah81FF)

;

& (Address < Ah83FF)

;

[Address ->[! SRAM, SPORT, JUART, ! PROM]

[ *h0000 ->[ L , H 9 H f H ]

t
Ahl000 ->[ L , H / H p H ]

[ *h4000' ->[ L , H 9 H # H ]

[
Ah7000: ->[ L , H 9 H V H ]

[
Ah7FFF' ->[ L , H 9 H p H ]

[ *h8000; ->[ H , L 9 H , H ]

[
Ah81FF; ->[ H , L 9 H , H ]

[
Ah8200: ->[ H , H 9 L t H ]

[
Ah83FF: ->[ H , H 9 L i H ]

[
Ah8400: ->[ H , H 9 H , L ]

i
Ahcooo: ->[ H , H 9 H , L ]

[
AhFFFF; ->[ H , H 9 H / L ]

end

Figure 8.1 Address decoder design file

to the signal name). The active-low declarations specify that these

signals will be low under the conditions indicated by the design equa-
tions, rather than high. The reason for this is that the memory chips

and I/O circuitry that are being controlled with this decoder have
active-low enable inputs.

This design will fit comfortably into a simple PLD such as the 1 6L8 PAL
device. It would also be possible to use a 16H8 PAL (or a simple PROM
for that matter) since the minimized Boolean equations that result from
the description will, with the appropriate equation polarity, fit into

devices that have either inverting or noninverting outputs. Although
this active-low design uses fewer product terms when implemented with
inverting outputs, an active-low circuit doesn't necessarily require an
inverted output implementation.
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Another thing of interest about this ABEL description is the use of a
16-bit set declaration (the six address line inputs padded to 16 bits with

no-connects). The use of a 16-bit set allows the decoder to be specified

in terms of actual memory address boundaries. Using no-connects in

this way can vastly simplify the description of more complex circuits.

8.2 COMPARATORS

The address decoder described earlier used a comparator function to

decode a set of inputs. Comparators of various types are extremely

common in digital circuits and can be constructed in a variety ofways.

There are two basic types of comparators: identity comparators and
magnitude comparators.

Identity Comparators

An identity comparator is a circuit that compares the values observed

on a set of inputs against either a fixed pattern or another set of inputs.

When the comparison is made against a fixed set of values, the circuit

is a decoder and is a simple AND operation, as shown in Figure 8.2.

When two sets of inputs are compared, the logic is somewhat more
complex, but is easily derived if you consider that such an "equal to"

comparison function is equivalent to an XNOR operation between each
bit of the input sets. Correspondingly, a "not equal to" function is

equivalent to an XOR. This is shown in Figure 8.3.

The amount of circuitry required to implement an equality comparator
increases in a linear fashion with an increase in the size of the input

Figure 8.2 Fixed-value identity comparator circuit
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B )E>

Figure 8.3 Equality comparison of two inputs

sets if XNOR (or XOR) gates are used. Figure 8.4 shows a circuit that

implements an 8-bit equality comparator using XNOR gates. If the

comparator is implemented in sum of products, however, the increase

in size will be exponential.

The eight XNOR gates shown in the circuit provides a comparison
function for one pair of bits for the two input sets. The ABEL design

A7

B7

A6

B6

A5

B5

A4

B4

A3

B3

A2

B2

A1

B1

AO

BO

I>
I>
x>-

I>-

-A EQ B

Figure 8.4 Eight-bit equality comparator circuit
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module equal

8

title '8-bit identity comparator'

a7. . aO
b7..b0

pin;
pin;

A_EQ_B pin istype ' com '

,

A - [a7.

B - [b7.

• aO] ;

• bO] ;

equations

A_EQ_B = (A — B);

test_vectors ([ A , B ]

[
Ah00, Ah00]
[*hOF, *hOF]

[
AhlE,*hE0]

[
Ah00,*hF0]
[*hlO,*hll]

[
Ah33, Ah33] i

i

i

i

i

i

i

V

V

V

V

V

V

V _EQ_

1,

1,

0,

0,

0,

1,

_B)

end

Figure 8.5 Eight-bit equality comparator design file

shown in Figure 8.5 implements this same circuit using a high-level

equation.

To implement this design in a device that does not have XOR gates, the

design will have to be flattened to convert the == operation into

sum-of-products Boolean equations. The sizes of the resulting Boolean
equations (shown in Figure 8.6) are too large for one output of a simple

PLD, so a more complex PLD must be used unless equations are

somehow split into smaller units.

When an equality comparator that compares two input sets is imple-

mented in sum of products, the resulting circuit will always require at

least In product terms, where n is the number of bits in each input set.

This assumes that the circuit is being implemented in negative polarity

(using a PLD with either negative or programmable output polarity, for

example). If the circuit is being implemented in positive polarity the

number of product terms required is 2". This is a general rule when
designing identity comparators: equality comparators are most effi-

ciently implemented with negative polarity, whereas inequality compa-
rators are better implemented with positive polarity.

To reduce the product term requirements of this circuit, we need to

make some changes. The simplestway to make the circuit more compact
is to utilize additional outputs and implement the design in multilevel
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!A_EQ_B AO & 1B0

# !A0 & BO

# Al & !B1

# IA1 & Bl
# A2 & !B2

# !A2 & B2
# A3 & !B3

# !A3 & B3

# A4 & !B4

# !A4 & B4

# A5 & !B5

# !A5 & B5

# A6 & !B6

# !A6 & B6

# A7 & !B7

# •A8 & B7;

Figure 8.6 Minimized logic for eight-bit comparator

logic. Figure 8.7 shows an 8-bit identity comparator implemented as

two 4-bit comparators ANDed together. The correspondingABEL design

is shown in Figure 8.8.

In this version of the comparator, two 4-bit comparators are assigned

to outputs named TEMPI and TEMP2. These outputs are then fed back
and ANDed together to achieve the desired function for A_EQ_B.

Using ©CARRY for Large Comparators

An alternative way to build large multilevel comparators is to use ABEL's
©CARRY directive. This directive instructs the compiler to construct

circuits such as comparators and adders using a chain of smaller

circuits. To describe a very large comparator using ©CARRY, we de-

scribe the comparator at a high level and specify the width ofthe smaller

chained comparators in the argument to the ©CARRY directive. Figure

8.9 illustrates how ©CARRY can be used to describe a very large (36-bit)

equality comparator. A value of 2 is used in the ©CARRY directive,

indicating that the comparator is to be constructed out of chained 2-bit

comparators. Note that this is not necessarily the best implementation
of a large comparator; using a balanced tree rather than a chain is

usually more efficient.

Magnitude Comparators

When designing a magnitude comparator (such as an address decoder)

that compares a set of inputs against one or more fixed values to
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TEMPI

A_EQ_B

TEMP2

Figure 8.7 Eight-bit comparator tree

module equal 8

a

title 'Multilevel 8 -bit identity comparator'

a7. . aO pin;
b7. .bO pin;
A_EQ_B pin istype 'com';
TEMPI node istype 'com';
TEMP2 node istype 'com';
A - [a7..a0];
B - [b7..b0];

equations
TEMPI
TEMP2

A_EQ_B

([a7..a4] » [b7..b4]);
([a3..a0] — [b3..b0]);
TEMPI 6 TEMP2;

test_vectors ([ A , B ]->

[
Ah00, Ah00]->

[
AhOF, AhOF]->

[
AhlE, AhE0]->

[
Ah00, AhP0]->

[
AhlO, Ahll]->

[
Ah33, Ah33]->

A_EQ_B)
l;

l;

0;

0;

0;

If
end

Figure 8.8 Multilevel equality comparator described using equations
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module comp36
title 'Very large (36-bit) comparator'

a35 . .a0 pin;
b35 . . bO pin;
A = [a35 . .a0]

;

B = [b35. .bO]

;

A EQ B pin istype 'com';

equations
©CARRY 2;

A_EQ_B = A == B;

test_vectors ( [ A , B 1 -> [A EQ B

[
Ah000000001, Ah000000001]->[ 1

[
AhFFFFFFFFF, AhFFFFFFFFF] ->

[

1

[
AhE045C23lD, Ah358B98AF9]->[

[
AhlF76BA8F9, Ah98FB5CA23]->[

[
Ah03B45CAll, Ah03B45CAll]->[ 1

[
AhEEEEEEEEl, AhEEEEEEEE2] ->

[

[
AhC3C3C3C3C, AhC3C3C3C3C] ->

[

1

[
Ah555555555, AhAAAAAAAAA]->[

end

Figure 8.9 Chained 36-bit comparator described using ©CARRY directive

determine a relative result (greater than or less than), the amount of

circuitry required is less obvious. This is because the binary pattern of

values to be compared determines the resulting circuit size. Ifyou need
to estimate the size of such a comparator, you can count the number
of ones and zeros in the binary form of the fixed value. At most, each
one in the pattern will require one product term if implemented with
positive polarity, while the negative polarity form may require a product
term for each zero. The maximum number of product terms required

when you have a choice of output polarity is therefore n/2, where n is

the number of bits in the input set.

Even more troublesome (although more predictable) are comparator
circuits that compare two arbitrary sets of inputs to determine which
is greater. A magnitude comparator such as this, if implemented in

two-level logic, will always require at least 2
n
product terms to imple-

ment, where n is the number of bits in each input set. Consider, for

example, the following ABEL equation:

A_GT_B = [a7..a0] > [b7..b0];

This harmless looking equation will generate 255 product terms (383

product terms if implemented in a PLD with inverting outputs) and
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would be extremely wasteful (perhaps impossible) to implement in a
programmable device or any other technology. With an understanding
of how comparators work, though, we can determine a more efficient

solution.

A comparator circuit of this sort is very regular in its construction, and
this allows us to design a circuit that operates in a more procedural, or

algorithmic, manner. We'll show how the algorithm for comparing two
sets of inputs works by demonstrating how it's used to compare two
sets of four inputs each. First, the bit positions of each number [A and
B) are labeled from most significant bit to least significant bit as A3, A2,

Al, AO and B3, B2, Bl, BO, respectively.

To compare these two inputs sets, we scan the two sets, beginning with
the least significant pair of bits {AO and BO) and perform a comparison
operation to each bit pair in sequence. For each bit pair, if the An bit is

greater than the Bn bit, we know that the value of set A is greater than
the value of set B up to that point. If the two bits are equal, then the

previous (less significant) bit pair comparisons must be used to deter-

mine the results.

The algorithm for each bit can be expressed in the form of the single-bit

comparator circuit with carry-in shown in Figure 8. 10. The information

about the previous bit in a multiple-bit comparison is provided to the

comparator circuit through the C_IN signal.

Any number of these single-bit comparators can be chained to create a
multiple-bit ripple comparator. Figure 8. 1 1 shows an eight-bit magni-
tude comparator circuit implemented in this way. This circuit could be
implemented in a PLD if a device was used that had sufficient input and
output pins available or had the capability for multilevel logic. This
representation might be ideal for implementation in an FPGA, since an
FPGA is composed of many internal logic modules of limited size.

C_IN

A

B

)D>

=L>n

C^ ry
d>

-A EQ B

-A GT B

Figure 8.10 Single-bit magnitude comparator with carry-in
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A GT B

Figure 8.11 Eight-bit magnitude comparator chain

It's also possible to construct an eight-bit magnitude comparator out of

two cascading four -bit magnitude comparators. With a properly de-

signed four -bit comparator, it's possible to cascade as many compara-
tors as needed to compare large input sets. A four -bit comparator circuit

with carry-in that provides this capability is shown in Figure 8. 12.

Like the cascaded one-bit comparators, each succeeding comparator
stage will add a fixed amount of delay time to the comparator circuit as

a whole. The block diagram in Figure 8.13 shows two four -bit magnitude
comparators cascaded to create an eight-bit magnitude comparator.

This circuit will operate faster than the ripple comparator shown in
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A EQ B

A GT B

Figure 8.12 Four-bit magnitude comparator with carry-in

A7
A6
A5
A4

B7
B6
B5
B4

A3
A2
A1
AO

B3
B2
B1
BO

CARRY

A3
A2
A1
AO

B3
B2
B1
BO

CO

COMP4

A_GT B

A_EQ_B

4-BIT
COMPARATOR

A3
A2
A1
AO

B3
B2
B1
BO

COMP4

A GT B

A_EQ B

CO 4-BIT
COMPARATOR

A GT B

A_EQ_B

Figure 8.13 Cascading two four-bit comparators to create an eight-bit comparator
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module mag

8

title '8-bit magnitude and equality comparator'

a7 . .aO pin;

b7. .bO pin;

A_GT_B pin istype ' com '

;

GT_0 pin istype ' com '

;

GT_1 pin istype ' com '

;

A_EQ_B pin istype ' com '

;

EQ_1 pin istype ' com '

;

EQ_2 pin istype ' com '

;

A = [a7. • aO] ;

B = [b7. • bO];

tions

EQ_2 = (A[7..4] == B[7..4]);
EQ_1 = (A[3..0] == B[3..0]);

A_EQ__B = EQ_2 & EQ_1;

A_GT_B = (A[7..4] > B[7..4]) # EQ_2 & GT_1;
GT_1 = (A[3..0] > B[3..0]) # EQ_1 & GT_0;

test_vectors ( [ A , B , st_o: ->[A. GT_B -A_EQ_B]

[
Ah00, Ah00, o :

->[ 1 ]

[
AhOF, AhOF, o : ->i 1 ]

[
AhFE, AhE0, o :

->[ 1 ]

[
Ah00, AhF0, o :

->[ ]

[
Ah20, Ahll, o :

->[ 1 ]

[
Ah34, Ah33, o :

->[ 1 ]

[
Ah55, Ah55, i : ->[ 1 , 1 ]

)

end

Figure 8.14 Eight-bit magnitude comparator design file

Figure 8. 1 1 and is more appropriately sized for implementation in PLDs.
The corresponding ABEL design file is shown in Figure 8.14.

As this comparator circuit demonstrates, circuits that are simple to

describe at a high level can require large amounts of logic to implement.
Because high-level equations are so easy to write, we tend to forget or

misunderstand how much logic can be created from a single, seemingly
simple equation.

Not only do simple design descriptions (such as the equation F = A>B)
often produce unmanageable amounts of logic, but they also may not

result in the optimum implementation of a circuit due to design

trade-offs that must be made to adapt a design to the restrictive
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requirements of a particular implementation technology. The imple-

mentation ofthe eight-bit magnitude comparator as a ripple comparator
and as a four -level logic circuit (two levels ofsum-of-products equations)

demonstrates how the constraints of the target architecture can have
an impact on the design.
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9.1 PARITY DETECTION

Parity detectors are used to check for errors in circuits that store and
process binary data. When a parity scheme is used, the binary data are

modified with an error-correcting code that is chosen to guarantee that

the number of 1 bits in the code is either always even [even parity) or

always odd [odd parity). In memory circuits, for example, an additional

bit (called the parity bit) is appended to the each data word (which is

typically eight bits) to create the desired parity. If any one of the bits in

the data word is read incorrectly, then the parity will be incorrect and
the memory interface circuitry can either generate an error condition

or attempt to correct the error.

Detection of odd parity can be accomplished by cascading exclusive-OR
gates as shown in Figure 9.1. In this circuit, seven exclusive-OR gates

are cascaded to produce the result. If higher speeds are required, the

alternative arrangement of XORs shown in Figure 9.2 can be used. In

this circuit, XOR gates are arranged in a tree structure. For extremely
high-speed circuits, the multiple levels ofXOR gates can be replaced by
as few as two levels of sum-of-products logic. For an eight-bit parity

generator, however, the amount of logic required may be prohibitive.

147
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D5

D6

D7

J°P3>5> ODD

Figure 9.1 Cascading XORs for parity generation

Figures 9.3 and 9.4 show two ways to describe an eight-bit parity circuit

using ABEL. In the first version, XOR operations are assigned to

combinational nodes that are then fed into other XOR operations,

creating the tree structure shown previously. In the second version,

some of these combinational nodes have been converted into ABEL
constant declarations so that they will be flattened into sum-of-products

logic. In addition, the second version of the design does not assume the

existence of XOR gates in the target architecture, so the 'xor' attribute

is removed from the signal declarations for the outputs. The result is

that the second version of the parity generater will require more logic

per output to implement, but will have fewer levels of logic and will

operate faster. If all the XOR operations were flattened into a single

equation for Odd, the total number of product terms required would be
impractical for all but the fastest circuits.

By experimenting with different combinations of combinational nodes

D5

D6

D7

ODD

r>^
Figure 9.2 Parity generation using a tree ofXORs
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module parityl
title '8-bit parity generator';

D7..D0 pin; "Data
Odd pin istype 'com,xor';
XI.. X6 node istype 'com,xor';

equations
XI = DO $ Dl;
X2 = D2 $ D3;

X3 = D4 $ D5;

X4 > D6 $ D7;

X5 - XI $ X2;

X6 = X3 $ X4;

Odd = X5 $ X6;

test_vectors ( [D7,D6,D5,D4,D3,D2,Dl,D0] ->[Odd]

)

[ 0, I, # 1, 0, 0, 1, l]->[ ];

[ 1, 1, 0, 0, 1, 0, 1, l]->[ 1 ];

[ 0, 1, 1, 0, 1, 1, 0, 0]->[ ];

[ 1, 1, 1, 0, 1, 1, 0, 0]->[ 1 ];

[ 1, 1, 1, 1, 1, 1, 1, l]->[ ];

[ 0, 0, 0, 0, 0, 0, 0, 0]->[ ];

end

Figure 9.3 Eight-bit parity generator design file

module parity2
title '8-bit fast parity generator';

D7. .DO

Odd
X5,X6

pin; "Data
pin istype 'com';
node istype 'com';

XI DO
X2 - D2
X3 - D4
X4 D6

$

$

$

$

Dl;

D3;
D5;
D7;

equations
X5 = XI $

X6 X3 $

Odd - X5 !

X2;
X4;

$ X6;

test vectors ( [07,06,05,04,03,02,01,00] -> [Odd]

[ 0, 1, 0, 1, 0, 0, 1, l]->[ ]

[ 1, 1, 0, 0, 1, 0, 1, l]->[ 1 ]

[ 0, 1, 1, 0, 1, 1, 0, 0]->[ ]

[ 1, 1, 1, 0, 1, 1, 0, 0]->[ 1 ]

[ 1, 1, 1, 1, 1, 1, 1, l]->[ ]

[ 0, 0, 0, 0, 0, 0, 0, 0]->[ ]

end

Figure 9.4 Design file for a faster eight-bit parity generator
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A—t-

B-

C IN =1 SUM

>
>-a> C OUT

>
Figure 9.5 Basic adder circuit (full adder)

and constant declarations, it's possible to balance the need for circuit

speed (depth of logic) with the size constraints of the target implemen-
tation.

9.2 ADDERS

Another situation in which the target architecture must be considered

is the construction of an adder. Adders can be constructed in many
ways, depending on the width of the adder's operands and the speed of

operation required. The simplest full adder accepts two bits and a carry

as input and produces a sum and carry result. This circuit is shown in

Figure 9.5.

The adder circuit shown can be generalized to an arbitrary number of

bits. For any adder circuit, the sum of the add operation consists of two
n-bit inputs and one n-bit output, plus a carry. If more than one adder
is going to be connected to form an adder chain, each adder in the chain
(with the exception of the first) must have a carry-in bit as shown in

A0 BO

1 1

A1 B1

I I

A2 B2

I I

A7 B7

I I

A B

C_l CO

S

A B

C_l CO

S

A B

C_l CO

S

— • • •—
A B

c_i c_o

S

1

SO
I

S1
I

82
I

S7

OUT

Figure 9.6 Adder chain
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module add8a
title '8-bit adder constructed of eight 1-bit adders'

a7..a0 pin;
b7..b0 pin;
c7..cl node istype 'com';

s7..s0 pin istype 'com';

c_out pin istype 'com';

"operand 1

"operand 2

"Adder carry bits
"Sum bits
"Carry out

equations

sO
cl

si

c2

s2

c3

S3

c4

s4

c5

s5

c6

s6

c7

"Half adder for bit

"Full adder for bit 1

aO $ bO;
aO 6 bO;

al $ bl $ cl;

al & bl # (al $ bl) 6 cl;

a2 $ b2 $ c2; "Pull adder for bit 2

a2 ft b2 * (a2 $ b2) & c2;

a3 $ b3 $ c3; "Full adder for bit 3

a3 & b3 # (a3 $ b3) & c3;

a4 $ b« $ c4; "Full adder for bit 4

a4 6 b4 # (a4 $ b4) 6 c4;

a5 $ b5 $ c5; "Full adder for bit 5

a5 a b5 * (a5 $ b5) & c5;

a6 $ b6 $ c6; "Full adder for bit 6

a6 & b6 # (a6 $ b6) & c6;

s7 - a7 $ b7 $ c7; "Full adder for bit 7

c_out - a7 a b7 • (a7 $ b7) & c7;

test_vectors

(

[ [a7. .aO]

,

[b7..b0]]

[ 1 , 1 ]

[ 24 112 ]

[ 99 , 13 ]

[ 82 109 ]

[ 100 100 ]

[ 255 , 255 ]

->[ [c_out # s7. .s0] ]

)

->[ 2 ];
->[ 136 ];

->[ 112 ];

->[ 191 ];

->[ 200 ];

->[ 510 ]; 'Test carry
end

Figure 9.7 Eight-bit adder chain described with ABEL
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Figure 9.6.

Figure 9.7 is an eight-bit adder chain described using ABEL. The
least-significant bit in the chain (output SO) is a half-adder, so no
carry-in is provided for this adder circuit. Bits SI through S7 are

described using full adders. The carry signals between adders are

represented by signals Cl through C7. A carry-out signal for the entire

circuit is provided by the output pin C_OUT.

9.3 HIGH-LEVEL ADDER EQUATIONS

In ABEL, adders can be described using high-level operators and set

notation. Figure 9.8 describes the same chain of one-bit adders rewrit-

ten using high-level add operators and set notation. In each stage of the

adder, sets are used to collect and add the two operands (the addend
and augend) and the carry-in from the previous bit. In the least

module add8b
title '8-bit adder constructed of eight 1-bit adders'

a7. . aO pin; "operand 1

b7. .bO Pin; "operand 2

C7. .cl node istype 'com'; "Adder carry bits
s7. . sO pin istype 'com'; "Sum bits
c_out pin istype 'com'; "Carry out

equations

[ cl ,s0] = [.x.,aO] + [.x.,b0] + [0,0]
[ c2 ,61] = [.x.,al] + [.x.,bl] + [ ,cl]

[ c3 ,82] = [.x.,a2] + [.x.,b2] + [ ,c2]

[ c4 ,83] = [.x.,a3] + [,x.,b3] + [ ,c3],

t c5 ,84] = [,x.,a4] + [,x.,b4] + [ ,c4],

[ c6 ,85] = [.x.,a5] + [.x.,b5] + [ ,c5],

[ c7 ,86] = [.x.,a6] + [.x.,b6] + [ ,c6]

[c_out, s7] = [.x.,a7] + [.x.,b7] + [ ,c7],

test_vectors( [ [a7 . . aO]

,

[b7..b0]]->[[c._out,s7

.

s0] ]

[ 1 , 1 ]->[ 2

[ 24 , 112 ]->[ 136

[ 99 , 13 ]->[ 112

C 100 , 100 ]->[ 200

[ 255 , 255 ]->[ 510 'Test carry

end

Figure 9.8 Using arithmetic equations to describe an adder chain



9.4 FAST CARRY (LOOK-AHEAD) ADDERS 153

significant bit of the adder, the carry-in is specified as zero. No-connect

special constants are used to pad all sets to a common width of two bits.

TTiis is necessary because the ABEL compiler enforces set width match-
ing. In the sets containing the carry-in bits, zeros are provided for

padding instead of no-connects.

The advantage of using sets and high-level operators will become more
obvious when we discuss adder chains constructed of wider adder
circuits.

9.4 FAST CARRY (LOOK-AHEAD) ADDERS

Like the comparator circuits described in Chapter 7, adders can be
tailored to the constraints of a specific implementation. The ripple

adders presented in Section 9.3 are compact, but may be too slow for

many applications. The look-ahead carry strategy can be employed to

balance speed with size. In adders, however, the size of the circuitry

generated from a full carry look-ahead implementation can be
astonishing. For example, the ABEL equation

[s6..s0] = [.x.,a5..a0] + [ .x. ,b5 . .bO] ;

translates to over 700 product terms. The practical limit for such adders
is four or five bits.

9.5 CHAINED ADDERS

If you need to operate on more than four or five bits, you will need to

chain together two or more smaller adders to accomplish the desired

result. Figure 9.9 shows a 16-bit adder described as a chain of eight

two-bit adders. In this design, each two-bit adder is described with a
high-level equation that adds two bits of data and one bit of carry from
the preceding adder.

Using @CARRY to Describe Chained Adders

The ©CARRY directive described in Chapter 8 can be used to create

large adder chains. When ©CARRY is specified, carry logic is preserved
between successive adders in the chain, resulting in a multilevel

implementation similar to the logic generated from the previous exam-
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module addchain
title '16 -bit chained adder'

al5 . . aO pin; "Operand 1

bl5. .bO pin; "Operand 2

sl5. . sO pin istype 'com'; "Sum
c7. .cl node istype 'com'; "Adder carry bits
c_out pin istype 'com'; "Carry out

equations

[ cl,sl,sO] = [.x., al, aO] +
> * " * 9 bl, bO] + [0,0, 0]

[ c2,s3,s2] = [.x., a3, a2] +
, * ** * / b3, b2] + [0,0, cl]

[ c3,s3,s2] = [.x., a5, a4] + [.x.. b5, b4] + [0,0, c2]

[ c4,s3,s2] [.x., a7, a6] +
> * " * / b7, b6] + [0,0, c3]

[ c5,s3,s2] = [.x., a9, a8] + [.X., b9, b8] •) [0,0, c4]

[ c6,s3,s2] = [ .x. , all, alO] + [.X., bll,bl0] + [0,0, c5]

[ c7,s3,s2] = [ .x. ,al3,al2] +
I * " * / bl3,bl2] + [0,0, c6]

[c_out, B3,s2] = [ .x. ,al5,al4] +
> * ** * / bl5,bl4] + [0,0, c7]

test_vectors( [ [al5. . aO] , [bl5. .bO]] ->[c_out,sl5. . sO]

)

[ 1 , 1 ]
->[ 2 ],

[ 17245 , 3563 ] ->[ 20808 ]

[ 14234 , 14234 ] ->[ 28468 ]

[ 255 , ] ->[ 255 ]

[ 32767 , 1 ] ->[ 32768 ]

end

Figure 9.9 Slxteen-bit adder chain composed of eight two-bit adders

module addchain
title '16-bit chained adder using ©CARRY'

al5 . . aO pin;
bl5. . bO pin;
sl5..s0 pin istype 'com'

c_out pin istype 'com';

'Operand 1

'Operand 2

'Sum

'Carry out

equations

Scarry 2; "Generate adder chain
[c_out,sl5. .80] = [ .x. ,al5. .aO] + [ .x. ,b!5. .bO]

;

I Iau . . BUJ L-OX3 . .ou J J -•* LC_iJUL, B19 .

.

tiuj ;

[ 1 , 1 ]->[ 2 ];

[ 17245 , 3563 ]->[ 20808 ];

[ 255 , ]->[ 255 ];

C 32767 , 1 ]->[ 32768 ];

end

Figure 9.10 Using the ©CARRY directive to create an adder chain
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pie. Figure 9.10 is an ABEL design file that describes the same 16-bit

adder using a single arithmetic equation and the ©CARRY directive.

9.6 SUBTRACTERS

Digital subtraction of two numbers can be performed by adding the

ones-complement of the second number (the subtrahend) to the first

number (the minuend). If this method is implemented directly in

hardware, a chain of full adders is required. A more efficienent method
is more commonly used. In this method, 1-bit circuits known as full

subtracters are chained. Each of these circuits accepts three single-bit

inputs (the minuend, subtrahend, and a borrow flag) and produces a
two-bit output (the difference and borrow-out flag).

A full subtracter circuit is similar to a full adder circuit. A chained

subtracter, like a chained adder, is constructed of single-bit units that

have carry-in and carry-out signals. In a subtracter, the carry signal

represents the borrow operation necessary for subtraction.

The Boolean equations that represent a full subtracter circuit are

D = M $ S $ Bm
Bout = !M&S # !M&Bin # S & Bin

In these equations, Mand S represent the minuend and subtrahend, D
represents the single-bit difference, Bin represents the borrow-in from
the less significant subtracter in the chain, and Bout represents the

borrow-out.

Figure 9. 1 1 is an eight-bit subtracter circuit described usingABEL. This
circuit accepts two eight-bit values and subtracts the second from the

first. No borrow-in is provided for this circuit, so the subtracter for bit

zero (output dO) is a half-subtracter and has no borrow-in. The most
significant bit (output 67) produces a borrow-out that is used to indicate

that the result of subtraction is negative.

9.7 FIBONACCI SEQUENCE GENERATOR

A Fibonacci sequence is a sequence of numbers, beginning with 1,1,

2, 3... in which every number in the sequence is the sum of the previous
two numbers. To construct a circuit that generates an n-bit Fibonacci
sequence, two n-bit registers A and B are required to store the last two
values of the sequence and add them to produce the next value. To
initialize the circuit, the A and B registers must be loaded with values
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module sub8a
title '8-bit subtracter constructed of eight 1-bit subtracters'

"operand 1 (minuend)
"operand 2 (subtrahend)
"Borrow bits
"Difference bits
"Borrow-out (negative flag)

a7 . . aO pin;
s7 . . sO pin;
b7. .bl node is type 'com'

d7. .dO pin istype 'com';

neg pin istype 'com';

equations
dO = aO $ sO;

bl = !a0 & sO;

dl - al $ si $ bl; "Pull subtracter
b2 = !al & si # ial & bl # si & bl
d2 = a2 $ s2 $ b2; "Full
b3 = !a2 & s2 # !a2 & b2 # s2 & b2
d3 = a3 $ S3 $ b3; "Full
b4 = !a3 & s3 # !a3 & b3 # s3 & b3
d4 = a4 $ s4 $ b4; "Full
b5 = !a4 & s4 # !a4 & b4 # s4 & b4
d5 = a5 $ s5 $ b5; "Full
b6 = !a5 & s5 # !a5 & b5 # s5 & b5
d6 = a6 $ s6 $ b6; "Full
b7 = !a6 & s6 # !a6 & b6 # s6 & b6
d7 = a7 $ s7 $ b7; "Full subtracter
neg !a7 & s7 # !a7 & b7 # s7 & b7;

"Half subtracter

subtracter

subtracter

subtracter

subtracter

subtracter

test_vectors ( [ [a7. .aO]

1

200
18

145
1

55

[s7. .sO]

1

67

4

15

2

100

->t[d7
->[

->[

->[

->[

->[

->[

. dO] , neg]

)

133
14

130
255
211

1

1

end

for bit

for bit 1

for bit 2

for bit 3

for bit 4

for bit 5

for bit 6

for bit 7

Figure 9.11 Eight-bit subtractor chain design description

of and 1, respectively. Subsequent cycles of the circuit must move the

calculated next value into the B register while moving the value stored

in the B register to the A register. In this implementation, the A and B
registers form a two-deep first-in first-out (FIFO) stack.

The ABEL source file shown in Figure 9.12 describes the Fibonacci

generator circuit. The eight-bit registers are declared as signals A7
through AO and B7 through BO, respectively, and the signals that carry

the calculated next value are declared as signals S7 through SO. Since

an eight-bit adder circuit would be impractical to implement as a full

look-ahead circuit, carry bits are declared as signals Cout and C7
through CI. No carry-in is required for bit zero of the adder circuit. A
carry-out from the MSB of the adder is required, however, to detect that



9.7 FIBONACCI SEQUENCE GENERATOR 157

module fibl
title 'Fibonacci

Clk,Clr
A7. .AO

B7. .BO

S7. .SO

Cout,C7. .CI

Zero
Restart
A
B
S

Carry
CarryOut
Carryln

sequence generator'
pin;
node is type 'reg, buffer'
pin istype 'reg, buffer'

;

pin istype 'com';
node istype 'com';
node istype 'com';
node istype 'reg';
= [A7..A0];
= [B7..B0];
= [S7..S0];
= [C7..C1,0];
= [Cout,C7. .CI];
= [C7..C1,0];

equations
S = A $ B $ Carryln;
CarryOut = B & A # (B#A) & Carryln;
Zero = (S == 0)

;

when (Zero) Then A := 1;

Else A := B;

B := S;

Restart :
= Cout

;

"Chained adder
"Carry for adder

'Restart on overflow

[A,B] .ar = Clr # Restart;
[A,B] .elk = Clk;
Restart. elk = Clk;

Test_Vectors ( [Clk, Clr 1

-> [

I.e., 1 -> [

[.C.< -> [

[C.i -> [

[.C.i -> [

[.C.i -> [

[.c. -> [

[•C.i -> [

[.C.« -> [

[.c, o
• -> [

[.C.i -> [

[.C.i o ;
-> [

[.c.< -> [

[.C.i -> [

C.c, -> [

[.C.i -> [

[.C.i -> [

[.c.< -> [

[•C.i -> [

[.C.i -> [

[.C.i -> [

A, B, S])

o, o, 0];

1. 0, l];

0, 1, l];

1. 1, 2];

1, 2, 3]|
2, 3, 5];

3, 5, 8];

5, 8, 13];

8, 13, 21];
13, 21, 34];
21, 34, 55];
34, 55, 89];
55, 89, 144] |

89, 144, 233];
144, 233, .X.] ;

0, 0, 0];

0, 0, 0] ;

1. 0, l];

0, ! l];

1. 1. 2];
end

Figure 9.12 ABEL design description for Fibonacci generator
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the sequence is complete. This final carry-out is designated as signal

Cout. The adder portion of this design is described using set notation

to simplify the description of the chained adder. Separate equations are

written for the XOR and carry generation functions required for the

adder. Zeros are used to pad the Cany and Carryln sets to the proper
width and orientation for the operation. Using sets in this ways means
that the logic description portion of this design is completely inde-

pendent of set width. Changing this design to a larger sequence
generator (16 bits, for example) is a simple matter of adding the new
signal declarations and modifying the set declarations.

9.8 BINARY MULTIPLICATION

There are many ways to implement multipliers or other advanced
arithmetic circuits. Fast combinational multiplier circuits can be con-

structed out of arrays of combinational adders, or slower (but more
compact) serial multipliers can be constructed using state machine
design methods. The multiplier that we will present is a sequential

circuit that performs multiplication using a modified form of the classic

shift and-add (pencil and paper) method.

8X8 Sequential Multiplier

Binary multiplication can be performed using sequential circuits that

perform the same functions as would be performed using pencil and
paper: successive additions and shifts. The traditional pencil and paper

Multiplicand:

Multiplier:

Binary

27

19

243
27

11011

10011

11011

11011

00000

00000
11011

Product: 513

Product: 1000000001

Figure 9.13 Decimal and binary multiplication of two five-bit values



9.8 BINARY MULTIPLICATION 159

Multiplicand: 11011

Multiplier: 10011 L
Accumulator

10011 00000

11011 1001 011011

11011 100 1010001

00000 10 01010001

00000 1 001010001

11011 1000000001

Binary Product: 1000000001

Figure 9.14 Alternative method of binary multiplication

method is demonstrated for two five-bit operands in Figure 9. 13. This

example shows how two five-bit numbers (27 and 19) are multiplied to

create a 10-bit result. The steps are shown in both decimal and binary

notations.

Binary multiplication is simpler than decimal multiplication because
there is no need to think about carry operations during the creation of

the shifted multiplicands. During the operation of the multiplier, each
bit of the multiplier is tested, starting from the rightmost bit. If the bit

is 1 , then the multiplicand is shifted the appropriate number of bits and
added to a partial product stored in a result accumulator. If the

multiplier's bit is 0, then no addition is performed. This algorithm is

relatively easy to implement in circuitry, but is not the most efficient

method possible for sequential binary multiplication. Instead, a differ-

ent method is used.

In this method, the result accumulator is used not only for storage of

the partial product, but for storage of the multiplier as well. This is

important because, in a typical application, the two operands (the

multiplier and multiplicand) must be latched into the circuit before the

multiplication operation begins. If one operarand (in this case A) is

stored in the high-order bits of the accumulator, then only one eight-bit

register is needed to store input data.

The use of the accumulator as an input register for one of the operands
is possible because the multiplier is only needed one bit at a time and
is processed from right to left as the partial product grows. The partial

product stored in the accumulator is initially only eight bits in length,

and grows by one bit with each stage of the multiply operation. The
example diagrammed in Figure 9.14 (the same five-bit example pre-

sented earlier) shows how the partial product is constructed in the
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module mult8x8
title '8-bit shift -and-add binary multiplier.'
1 1 1 1 II 1 1 1 1 1 1 1 1 III 1 1 1 1 1 II 1 1 1 1 II 1 1 1 1 1 1 1 1 1 1 III 1 1 1 III 1 1 II I II

//This 8-bit multiplier is a 9-state machine. The
//machine holds the current result value in the P

//product accumulator until the start input goes high.
//It then loads the multiplicand (B) into the
//MULTIPLICAND register (M) and the multiplier (A)

//into the left -most 8 bits of the partial product
//accumulator. It then sequences through the eight
//shift-and add states, adding shifted multiplicands
//to the partial product, gradually replacing the
//multiplier. Upon completion of the operation, the
//machine returns to the initial state with the status
//flag set.

X = c =

start pin;
clock pin;
reset pin;
a7 . . aO pin; A
b7. . bO pin; B

[a7. .aO]

;

[b7. .bO]

;

"Begin multiply
"Global clock
"Global reset
"Operand A
"Operand B

m7..m0 pin istype ' reg, buffer '

;

H = [m7 . .m0]

;

MSHFT = [X,m7. .m0, 0,0,0, 0, 0,0, 0, 0]

;

pl5..p0 pin istype ' reg, buff er '

;

P = [pl5..p0];

'Shift register

"Accumulator

q3 . .q0 pin istype reg, buffer'

;

SREG = [q3. .q0]; "State register
IDLE = [0,0,0,0], "States are
STATE

1

= [0,0,0,1], "numbered for
STATE2 = [0,0,1,1], "minimum
STATE

3

= [0,0,1,0], "bit change.
STATE4 = [0,1,1,0],
STATE5 = [0,1,0,0],
STATE

6

= [1,1,0,0],
STATE7 = [1,0,0,0],
STATE

8

= [1,0,0,1],

equations

[SREG,M,P] .elk = clock;
SREG.ar = reset;

"Load A if start
when (start) then

MSHFT[15..8] := A;

else
MSHFT [15.. 8] := MSHFT [15 . . 8] ; "Else hold

Figure 9.15 Eight-bit sequential multiplier design description (part 1 of 3)
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SCARRY 2;

state_diagram SREG
state IDLE:

if (start) then STATEl with P[15..8] := B[7..0];
else IDLE with P[15..0] :« P[15..0];

state STATEl:
P[15..9] := P[15..9]; "Preserve 7 bits of B in P

P[7..0] := (P[8] == 1) & MSHFT[15. .8];

goto STATE2;

state STATE2:
P[15..10] := P[15..10] ; "Preserve 6 bits of B in P

P[9..0] := (P[9] == 0) 6 [0,p8..p0]
# (P[9] == 1) & ([X,p8..p0] + MSHFT[16. .7] );

goto STATE 3;

state STATE3:
P[15..11] := P[15..11]; "Preserve 5 bits of B in P

P[10..0] := (P[10] - 0) & [0,p9..p0]

# (P[10] == 1) & ([X,p9..p0] + MSHFT[16. .6]);

goto STATE4;

state STATE4:
PC 15.. 12] := P[ 15.. 12]; "Preserve 4 bits of B in P

PC11..0] := (PC11] == 0) & [0,pl0..p0]
# (P[ll] == 1) & ([X,pl0..p0] + MSHFTC16. .5] )

;

goto STATE5;

state STATE5:
PC15..13] ! PC15..13]; "Preserve 3 bits of B in P

PC12..0] := (P[12] - 0) & [0,pll..p0]

# (P[12] - 1) & ([X,pll..p0] + HSHFTC16..4]);
goto STATE 6;

state STATE6:
PC15..14] : = PC15..14]; "Preserve 2 bits of B in P

P[13..0] := (P[13] == 0) & [0,pl2-.p0]
# (P[13] == 1) & ([X,pl2..p0] + MSHFT[16..3]);

goto STATE7;

state STATE7:
P[15] := P[15]; "Preserve 1 bit of B in P

PC14..0] I- (P[14] - 0) & [0,pl3..p0]
# (P[14] — 1) & (CX,pl3..pO] + MSHFTC16. .2] )

;

goto STATE 8;

state STATE8:
P[15..0] :* (P[15] == 0) & [0,pl4..p0]

# (P[15] - 1) & ([X,pl4..p0] + MSHFT[16. .1] );

goto IDLE;

Figure 9.16 Eight-bit sequential multiplier (part 2 of 3)
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1 Test vector macro.

declarations

test_mult macro (opl,op2, result)
test_vectors
'A=?opl, B=?op2,

( clock
C
c

c
c
c
c
c

c

c

reset
P=?result'
start, A

1

B ]->[SREG P

?opl,?op2]->[STATEl, X
X , X ]->[STATE2, X
X , X ]->[STATE3, X
X , X ]->[STATE4, X
X , X ]->[STATE5, X
X , X ]->[STATE6, X
X , X ]->[STATE7, X
X , X ]->[STATE8, X
X , X ]->[IDLE ,?result

test_vectors ( [reset] -> [SREG , P ])

[ 1 ]->[IDLE , ]; "Global reset

test_mult

(

Abll011, Abl0011, Abl000000001)

;

test_mult (2,3,6);
test_mult(10,10,100)

;

test_mult (9,9,81) ;

test_mult (7, 6,42) ;

test_mult ( 11, 11, 121)

;

test_mult(4,200,800);
test_mult(170, 85, 14450)

;

test_mult(100, 179, 17900)

;

test_mult (127, 188, 23876);
test_mult(199,0,0)

;

test_mult(0, 131,0)

;

test_mult (255, 255, 65025);
t es t_mul

t

(0,0,0);

end

Figure 9.17 Eight-bit sequential multiplier (part 3 of 3)

accumulator from right to left, replacing the five-bit multiplier value one
bit at a time.

Figure 9.15 through 9.17 show how this binary multiplier can be
described in ABEL. The design accepts two eight-bit inputs A and B and
performs a multiplication on them using the methodjust described. The
design is written as a nine-state state machine. In the first state, IDLE,

the machine waits until the start input is asserted. It then transitions

to state STATE 1 to begin the multiply sequence. In each of the eight

multiply states, one bit of the multiplier (B) is tested to determine if the
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multiplicand (A) should be shifted and added into the partial product
accumulator. The shift and add functions are described using set

indexing. To allow a simple shift operation to be performed using set

indexing, the multiplicand register (M) is padded to the right with eight

zeros in a set named MSHFT, as follows:

MSHFT = [X,m7 . .mO, 0, 0, 0, 0, 0, 0, 0, 0] ; "Shift register

The shift register is also padded to the left by one no-connect so that

set widths for the last adder (in STATED) match and carries are properly

preserved.

Using these set declarations and set indexing operations, the actual

shift and add operations for each state can be simplified to a few lines

of high-level equations. The shift and add function for STATE2, for

example, is

P[9..0] := (P[9] == 0) 6 [0,p8..p0]
# (P[9] == 1) & ([X,p8..p0] + MSHFT[16..7]);

This equation simply tests the second bit of the multipler to determine
whether the multiplicand should be shifted and added to the partial

product. If the bit is 1, then the set range specified for MSHFTwill cause
the correctly shifted multiplicand to be added to the least-significant 10

bits of the partial product without affecting the remaining (higher) bits

of the accumulator (where the multiplier itself is stored.)

The test vectors for this design are written using a macro that generates

the nine test vectors required to exercize the multiplier for one operation.

With this macro, adding a test case becomes a simple matter of adding
one line to the source file.
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D D

Code Converters
Awide variety of codes are used for the storage and transmission of data

in digital systems. Because different systems, or even differents parts

of the same system, may use a different code for the same information,

code converters are needed to perform data translation. Most code
converters are combinational circuits that perform a decode function.

Parallel code converters perform a straightforward decode function to

convert data, while serial code converters (such as serial-to-parallel

converters or checksum generators) perform translation of data that is

time dependent.

10.1 BCD TO SEVEN-SEGMENT DECODER

The BCD to seven-segment display decoder is a widely used example of

a simple combinational decoding circuit. This circuit accepts a four -bit

BCD representation of a number and converts it to the correct code to

drive a seven-segment display. This type of decoder uses a straightfor-

ward identity comparison (as described in Chapter 8) for each decoder
output.

ABEL's truth table syntax simplifies the description of circuits such as

this one that don't follow any predictable pattern or order. A truth table,

as described in Chapter 5, consists of a header and one or more truth
table entries that define all or part of the decoder function. The ABEL
design file shown in Figure 10. 1 uses a truth table to define the function

of the seven-segment display decoder. The truth table is simplified by

165
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module BCD

7

title 'BCD to 7 -segment display driver'

Segments -a-
f| |b

-g-

•
|

|c

-d-

D3,D2,D1,D0 pin; "BCD input
a,b, c, d, e, f

,

g pin istype 'com'; "Segment outputs
OB pin; "Output enable

BCD = [D3. • DO];
ON, OFF = 0,-l; "Inverted sense

equations

LED.oe = !0E; "Define output enable

truth_table (BCD-

>

[ a , b , C , d , e , f , g 1)
-> [ OFF, OFF, OFF, OFF, OFF, OFF, ON];

1 -> [ ON, OFF, OFF, ON, ON, ON, ON];
2 -> [ OFF, OFF, ON, OFF, OFF, ON, OFF] ;

3 -> [ OFF, OFF, OFF, OFF, ON, ON, OFF] ;

4 ->
[ ON, OFF, OFF, ON, ON, OFF, OFF] ;

5 -> [ OFF, ON, OFF, OFF, ON, OFF, OFF] ;

6 -> [ OFF, ON, OFF, OFF, OFF, OFF, OFF] ;

7 -> [ OFF, OFF, OFF, ON, ON, ON, ON];
8 ->

[ OFF, OFF, OFF, OFF, OFF, OFF, OFF] ;

9 ->
[ OFF, OFF, OFF, OFF, ON, OFF, OFF] ;

test_vectors ( [OB, BCD] -> [ a , b , C , d , e , f , g 1)

[ 0, ]-> [ OFF, OFF, OFF, OFF, OFF, OFF, ON];

[ 0, 1 ]-> ON, OFF, OFF, ON, ON, ON, ON];

t 0, 2 ]-> [ OFF, OFF, ON, OFF, OFF, ON, OFF] ;

[ 0, 3 ]->
: OFF, OFF, OFF, OFF, ON, ON, OFF] ;

[ 0, 4 ]-> [ ON, OFF, OFF, ON, ON, OFF, OFF] ;

t 0, 5 ]-> [ OFF, ON, OFF, OFF, ON, OFF, OFF] ;

[ 0, 6 ]->
: OFF, ON, OFF, OFF, OFF, OFF, OFF] ;

[ 0, 7 ]-> [ OFF, OFF, OFF, ON, ON, ON, ON];

[ 0, 6 ]-> [ OFF, OFF, OFF, OFF, OFF, OFF, OFF];

[ 0, 9 ]-> [ OFF, OFF, OFF, OFF, ON, OFF, OFF] ;

[ 1, 5 ]->

end

Figure 10. 1 BCD to seven-segment display driver design file
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the use of set notation; the four BCD inputs are grouped into a set so

that actual decimal values can be specified in the truth table and in the

test vectors that follow.

This truth table is an example of an incompletely specified function.

Since the values often through fifteen are unused in BCD, these values

are don't-cares in the decoder circuit. This is implied by their ommission
from the truth table. The 'dc' attribute applied to the seven decoder

outputs [a through g) indicates to the compiler that the missing six

conditions can be assigned values of either one or zero to improve
optimization ofthe circuit. ABEL provides three attributes to control the

processing of don't-cares: 'dc', 'pos' and 'neg'. These attributes can be
used to force unspecified inputs values to be decoded as zero (istype

'pos'), one (istype 'neg'), or don't-care (istype 'dc'). In a display decoder

such as this, the seven outputs are true don't-cares when any of the six

unspecified input combinations are encountered, so 'dc' optimization is

appropriate.

10.2 GRAY-CODE CONVERTERS

Gray codes are used whenever it is important to have only a single bit

change between the sequential values of the code. In Chapter 4 we
described how gray code can be used to avoid hazard situations in

asynchronous state machines. Gray codes are a class ofwhat are known
as reflected codes, because for any n-bit code the second 2n

~ 1
codes can

be derived by reversing the order of the first 2 codes and replacing

the leading zero with a leading one. Figure 10.2 lists the binary and gray
codes for the values through 15.

It's also possible to generate an n-bit gray code value directly from the
equivalent n-bit binary representation of a number. To convert binary
codes to gray codes, the following method is used. With the bits

numbered to n - 1 (from right to left): each bit i of the gray-coded value
is obtained by an exclusive-OR of bits i and i + 1 in the binary-coded
value (assuming bit n to be 0). Figure 10.3 is an ABEL design that uses
this method to convert 10-bit binary values to gray code.

10.3 CRC GENERATORS

Cyclic redundancy check (CRC) is used for error detection in digital data
transmission and storage systems. CRC can be generated either serially

or in parallel, depending on the requirements of the circuit and nature
of the data. CRC involves the generation of check bits from the data
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Decimal value

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Binary code
0000
0001

0010

0011

0100
0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Gray code
0000
0001

0011

0010

0110

0111

0101

0100
1100

1101

1111

1110

1010

1011

1001

1000

Figure 10.2 Binary and gray codes

module graycode
title 'Convert 10 -bit binary to gray code'

B9. .B0 pin;
G9..G0 pin istype 'com';

"Binary inputs
"Gray code outputs

equations

GO = B0 $ Bl;
Gl = Bl $ B2;

G2 = B2 $ B3;

G3 = B3 $ B4;

G4 B4 $ B5;

G5 = B5 $ B6;

G6 B6 $ B7;

G7 = B7 $ B8;

G8 = B8 $ B9;
G9 B9;1

f

test_vectors

(

[ B9. .B0 ]
-> [ G7..G0 ])

Ab0000000000 -> Ab0000000000;
Ab0000000001 -> A b0000000001;
Ab0010011010 -> Ab0011010111;
Ab0111001011 -> Ab0100101110;
*blll0101011 -> Abl001111110;
Abllllllllll -> Abl000000000;

end

Figure 10.3 Ten-bit gray code converter
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stream and the inclusion of the check bits with the transmitted data.

When the data are received, the check bits are regenerated and com-
pared against those transmitted. When the check bits do not match, an
error is indicated or a retransmission of data is requested.

All CRC generation schemes can be expressed in the form of a mathe-
matical function known as the generator function or generator polyno-

mial. A number of standard generator functions are in use. A few are

listed in Figure 10.4.

CRC Generation Standard CRC Generator Function

CRC-CCITT X16
+ X12

+ X5 +1

CRC-CCITT reverse X16
+ X 11 +X4

+ 1

CRC-16 X16
+ X15

+ X12
+ 1

CRC-1 6 reverse X16
+ X14

+ X + 1

X16
+ X15

+ X13
+ X7 + X4 + X2 +X + 1

CRC-12 X12
+ X 11 +X3

+ X2 + X + 1

LRC-8 X8
+ 1

X8
+ X7

+ X5
+ X4 + X + 1

Figure 10.4 Standard CRC generation functions

Serial CRC Generation

To generate CRC in a serial data stream, it's necessary to use a shift

register to capture and process some number of bits n, where n is the
number of CRC bits desired.

The type of shift register used in CRC generation is known as a linear

feedback shift register (LFSR). An LFSR captures and processes some
number of bits from the data stream, leaving the calculated CRC check
bits in the shift register after the appropriate number of data bits has
been read. With each shift of the LFSR, a logic function (typically an
XOR) is performed on one or more of the bits in the shift register and
fed back to other registers. Many possible XOR functions can be used,
depending on the types of errors that are expected in the data stream.
Figure 10.5 shows how a 3-bit LFSR can be used to generate CRC.

This 3-bit CRC generatorXORs each incoming data bit with the fed-back
contents of the last register in the LFSR before storing the bit in the first

register. The previous contents of the first register are also XORed with
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DATA
IN

~*(+y* xoXO -*©- X1 X2

DATA
OUT

Figure 10.5 Three-bit CRC using linear feedback shift register (LFSR)

the incoming data bit before being stored in the second register. The
logic for this CRC generator can be expressed with the equations

xo := Din $ X2;
XI := Din $ XO;
X2 := XI;

This simple CRC generator can be described with the following generator

function:

G(X) = X3 + X1
+ X°

The CRC-CCITT Standard

The CRC-CCITT standard was developed for the IBM Synchronous Data
Link Control (SDLC) communation protocol and is based on the follow-

ing generator function:

GQQ = X16 + X12
+ X5 + 1

Figure 10.6 shows how the CRC-CCITT is generated. The bits are

numbered from to 15 in the order that they are received (or from least

significant to most significant in the case of parallel data). Each bitwise

calculation results in a new bit being shifted into the bit with
exclusive-OR operations performed for bits 5, 12 and 16. Each bit

position from position 8 to position 15 has a corresponding intermediate
value that is the partial checksum for that bit. These intermediate

values are named I through P.

The equations required to implement this generation scheme are

I = X15 $ D7

J = X14 $ D6
K = X13 $ D5
L = X12 $ D4
M = Xll $ D3 $ I

N = X10 $ D2 $ J
= X9 $ Dl $ K

P = X8 $ DO $ L
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The ABEL source file that describes a serial implementation of this CRC
generator is given in Figures 10.7 and 10.8.

Module crc8s
Title 'Serial Cyclic Redundancy Check (CRC) Generator
using a 16-bit Linear Feedback Shift Register (LFSR)

G(X) = X16 + X12 + X5 + 1'

Clk,Set,Din pin;
X15..X0 pin istype ' reg, buf f er,xor '

;

CRC_Sum = [X15..X0];

Equations

XO = Din $ X15 ;

XI = XO;

X2 = XI;

X3 = X2;

X4 = X3;

X5 = X4 $ Din $ X15;
X6 = X5;
X7 = X6;
X8 = X7;
X9 = X8;

X10 = X9;
Xll = XI 0;

X12 = Xll $ Din $ X15;
X13 = X12;
X14 = XI3;
XI

5

= XI4;

CRC_i3um.dk = Clk;
CRC_£Sum . ap = Set

;

Test_Vectors ( [Clk, Set, Din] -> CRC_Sum)
[.C, 1 , ] -> AhFFFF;

[.c, 9 ]
-> .X.

[-C. 9 1 ]
-> .X.

[.c. 9 ]
-> • X.

[.c. a ]
-> .X.

[.c. 9 1 ]
-> • X.

[.c. 9 ]
-> .X.

[.c, 9 ]
-> .X.

[.c, 9 ]
-> Ah283C

- H = 48 = 0100 1000

Figure 10.7 Sixteen-bit CRC generator design file (part 1 of 2)
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End

•C, ,

•C, , 1

•C, , 1

.C, ,

.C, ,

.C, , 1

.C, ,

•C, , 1

.C, ,

.C, , 1

.C, , 1

.C, ,

.C, , 1

.C, , 1

.C, ,

.C, ,

.Ci ,

•C, , 1

.C, , 1

.C, ,

.C, , 1

.C, , 1

.C, ,

.C, ,

.C, ,

.C, , 1

•C, , 1

•C, ,

.C, , 1

•C, , 1

.C, , 1

.C. . 1

.X.

• X.

.X.

.X.

• X.

.X.

.X.
AhA569

.X.

.X.

.X.

• X.

.X.

.X.

.X.
Ah2165

.X.

.X.

.X.

.X.

.X.

.X.

.X.
AhFC69

.X.

• X.

.X.

.X.

.X.

.X.

.X.
AhDADA

e = 65 = 0110 0101

" 1 = 6C = 0110 1100

" 1 = 6C = 0110 1100

Figure 10.8 Sixteen-bit CRC generator (part 2 of 2)

Parallel CRC Generation

o = 6F = 0110 1111

Generation of CRC for parallel data is much simpler and is a straight-

foward application of Boolean equations representing the required

generator function. Figure 10.9 is anABEL design description of a 16-bit

CRC generator. In this design, the intermediate XOR functions repre-

sented by the identifiers I through P are assigned using constant
declarations. This means that the logic for the CRC function will expand
into sum-of-products logic. An alternative implementation would be to

declare / through P as nodes and write equations for them. This would
be a multilevel representation more appropriate for product-term lim-

ited devices such as LCAs.
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Module crc8p
Title '8-bit Parallel Cyclic Redundancy Check (CRC) Generator'

D7 . . DO pin;

X15. XO pin istype 'reg, buffer'

;

Clk,Set Pin;

CRC_Sum = [X15..X0];
Data = [D7..D0];

I - X15 $ D7;
J = X14 $ D6;

K = X13 $ D5;

L = X12 $ D4;

M - Xll $ D3 $ I;

N = X10 $ D2 $ J;

= X9 $ Dl $ K;

P = X8 $ DO $ L;

Equations

XO = P;

XI = O;

X2 = N;

X3 = M;

X4 = L;

X5 ,= K $ P;

X6 = J $ 0;

X7 = I $ N;

X8 = XO $ M;

X9 = XI $ L;

X10 = X2 $ K;

Xll •m X3 $ J;

X12 = X4 $ p $ i;

X13 = X5 $ 0;

X14 = X6 $ N;

X15 = X7 $ M;

CRC_Sum.Clk = Clk;
CRC_Sum . ap = Set

;

TestJVectors ( [Clk, Set, Data] -> CRC_Sum)
[.C. #

[.C,
[.C,
[.C,
[.C,
[.C.»

]

'H']

'e']
'1']

'1']

'o']

->

->

->

->

->

->

AhFFFF;
Ah283C;
AhA569;
Ah2165;
AhFC69;
AhDADA;

End

Figure 10.9 Sixteen-bit parallel CRC-CCITT generator design file
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Describing State
Machines
State machines, as we discussed in Chapter 4, are circuits that include

some form of memory to hold a current state, transition logic that

determines the next state, and output logic that determines the state

machine's function as seen from the outside. A number of possible

methods can be used when describing a state machine in ABEL,
depending on the complexity of the machine. The two methods that we
will examine in this chapter are state transition tables and state

diagrams.

11 .1 STATE TRANSITION TABLES

ABEL's truth table language is well suited for describing state machines,
particularly those that contain a large number of similar transitions.

Truth tables written for the purpose of state machine specification are

often referred to as state transition tables. In ABEL, a state machine
written using a truth table can actually be more efficient than the same
state machine described using a state diagram, because all the outputs
described in a truth table are candidates for don't-care minimizations.

In a state diagram, only the transition logic of the state registers is

optimized for don't-cares. (The ©DCSTATE directive described in Ap-

177
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Reset
Hold

OUt1 = 1

out2 = 1

Hold

Hold

Hold

Hold

E \S out1 = in1 & in2

out2 in1 $ in2

Figure 11.1 Mealy state machine with five states

pendixA does provide one method for optimizing state machine outputs,

however.)

To demonstrate how a state machine is expressed using truth tables,

consider the state graph illustrated in Figure 11.1. This state machine
has five states and eleven possible state transitions (including holds).

The machine also has two combinational (Mealy) outputs that decode
the current state and the state diagram inputs.

To describe this state machine in a truth table, all possible transition

conditions are listed along with their resulting next states. The ABEL
design description is shown in Figure 11.2.

In the design file, the five states of the machine are given the values of

zero through four and the symbolic names of A, B, C, D, and E. The
state names decode to the binary values of 000,001,011,010, and 100,

respectively.

Next, a truth table is used to specify the state machine's operation. Each
line of the truth table represents a unique combination of inputs. The
first ten entries in the table describe the transition logic for the state

machine, and the last four lines describe the output logic for out J and
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module state_tt
title 'Five state Mealy machine described using a state table';

Clock, Reset pin;
inl,in2,hold pin;

Q3..Q0 pin is type ' reg, buffer, dc '

;

outl,out2 pin istype 'com,dc';

Qstate B [Q2,Q1,Q0]
A = [ 0, 0, 0]

B = [ 0, 0, 1]

C = [ 0, 1, 1]

D a [ 0, 1, 0]

E = [ 1, 0, 0]

equations

Qstate. elk Clock;
Qstate. ar = Reset;

truth table
( [ inl , in2 , hold, Qstate . f

b

: > [Qstate I

-> [outl, out2] 1

L • X / • X • / 1 , A :>[ A
1

-> 1 , 1 ]
» 1'Hold in A

L • X • r • X • / , A :>[ B
1

-> 1 , 1 ]

L • X • i •X • / 1 , B :>[ B
1

-> '. >x.

,

.X.] t 1'Hold in B

L • X • f m X • / , B :>[ C
1

-> '. >x.

,

.X.]

L •X m g mX • / 1 f c :>[ C -> '. -x.

,

.X. ]
• 1•Hold in C

L •X • § m X • / , c
1
:> [ D -> '. .X. i .X. ]

L •X / •X • / 1 , D
1
:> [ D ->

i
.X. i .X. ]

> 1Hold in D

L •X • / • X • / • D
1

!> [ E ->
! -x.

,

.X. ]

L •X * mX • / 1 , E :> [ E -> • X. , .X. ]
. 1'Hold in E

L • X • / JC • / , E
1

!> [ A ->
! .x.

,

.X. ]

[0,0, .X. i E ' !> [ .X. ->
[ o , ]

* 1'Outputs
[0,1, .X. » E :> [ .X. ->

[ o , 1 ]j
• 1'active in

[1,0, .X. , E :> [ .X. ->
[ o , 1 ]> "state E

[i,i. .X. , E :> [ .X. ->
[ 1 i ]

t_vectors ( [Clock, Reset f inl, Ln2 , h<3ld] -> [Qstate,

(

)utl,out2] 1

.c. , 1 , , , ] -> [ A , 1 , 1 ],

.c. , , o , , 1 ] -> [ A , 1 , 1 ],

.c. , , o , , ] -> [ B , .X / • X • J

.c.
, • , , ] -> [ C , .X / • X • J

.c.
, r , , ] -> [ D , .X * / * x • J

.c. , , o , , ] -> [ E , , ],

.c.
, , o , 1 , 1 ] -> [ E , , i ]

.c. , 1 , o , 1 ]
->

[ E , , i ],

.c. , , 1 , 1 , 1 ] -> [ E , 1 , ],

• c. , , o , o , ] -> [ A , 1 , i ]j

.c.
, , o , o , ] -> [ B , .X ., -x.],

• C. , - o , o , 1 ] -> [ B , .X * # * x • J

.c. , , o , , ] -> [ c , .X / * x • J

end

Figure 11.2 Five-state Mealy state machine described with ABEL
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out2 while the machine is in state E. The two outputs of this state

machine are only decoded in states A and E of the machine, so the .X.

special constant is entered for outl and out2 in states B, C, and D.

When this design is processed by the ABEL compiler, the don't-care

information implied by the entries in the table for outl and out2 will

result in a reduction in the amount of logic required for each of the two
outputs.

11.2 USING STATE DIAGRAMS

The truth table is a convenient method for describing state machines
that have relatively few transitions or a larger number of transitions

that are common to many states. More complex state machines, how-
ever, are often better described using alternative methods. One such
method is the state diagram.

A state diagram is a relatively simple method of describing the operation

of complex Mealy model and Moore model state machines. Any state

machine that can be described in a state diagram can also be described

using a truth table (or equations for that matter.) The key difference

between truth tables and state diagrams is that when you describe a
state machine using a truth table you describe the machine primarily

state_diagram Qstate

state A: outl = 1;

out 2 = 1;

if Hold then A
else B;

state B: if Hold then B
else C;

state C: if Hold then C
else D;

state D: if Hold then D
else E;

state E: outl = inl & in2;
out 2 = inl $ in2;
if Hold then E
else A;

Figure 11.3 ABEL state diagram language
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in terms of its transitions. When you use a state diagram, you describe

the machine more in terms of its possible states.

Figure 11.3 shows an ABEL state diagram. This state diagram describes

the same state machine thatwe previously described using a truth table.

Notice that the state diagram contains one state description for each of

the four states in the machine. The state diagram, like the truth table,

has a header that specifies which signals are to be used for the state

register. Unlike a truth table, other state machine inputs and outputs

are not included in the state diagram header. Another difference is that

the state register declared in the state machine header is flip-flop type

independent; the state machine is written the same regardless of the

type of flip-flops used for the state register.

A series of state descriptions follow the header. Each state description

includes a value declaration, transition information, and optional equa-
tions for state machine outputs.

To describe the state machine transitions, each state description con-

tains one or more transition statements. If you compare the state

description for each state to its equivalent bubble in the state graph,

you can see how the state transitions are expressed. States A through
E have simple two-way branches that are described using IF-THEN-
ELSE statements.

The two outputs out J and out2 are denned to be high in state A, and as
AND and XOR functions, respectively, in state E. This is the simplest

way to describe state machine outputs in ABEL, but can have an
optimization penalty. In ABEL, all equations, including those written

within state diagrams, describe the on-set of a logic function. This
means that all conditions not covered by equations are zero. In the truth

table version of this design, the outputs were defined only in states A
and E. If we want to achieve the same level of optimization for the
outputs using a state diagram, we must either include don't-care

equations in states B, C, and D or move the equations out of the state

diagram and into a separate truth table. (The ©DCSTATE directive can
also be used to optimize state diagram outputs. See AppendixA for more
information on this directive.) Two alternative versions ofthe design are

shown in Figures 1 1.4 and 11.5.

11 .3 POWER-UP AND ILLEGAL STATES

ABEL state machine descriptions are flip-flop type independent with
regard to the state register. In some situations, however, the type of

flip-flop being used and the architecture of the target device can affect



182 Chapter 1 1 : Describing State Machines

state_diagram Qstate
state A: outl - 1;

out 2 - 1;

if Hold then A
else B;

state B: outl ? 1;

out2 ?= 1;

if Hold then B
else C;

state C: outl ? 1;

out2 ? 1;

if Hold then C
else D;

state D: outl ? 1;

out2 ?= 1;

if Hold then D
else E;

state E: outl = inl & in2;
out 2 - inl $ in2;

if Hold then E
else A;

Figure 11.4 Specifying don't-cares for outputs

state_diagram Qstate
state A: if Hold then A

else B;

state B: if Hold then B
else C;

state C: if Hold then C
else O;

state D: if Hold then D
else E;

state E: if Hold then E
else A;

truth_table (

I

Qstate. PB, inl, in2] -> [outl,out2]

)

A ,.x.,.x.]->[ 1 , 1 ];

E ,0,0 ]->[ , 0]|
E ,0,1 ]->[ , 1]|
E ,1,0 ]->[ , 1]|
E ,1,1 ]->[ 1 , ];

Figure 11.5 Decoding state machine outputs in a truth table
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Hold

Hold

Figure 11.6 Simple machine with illegal state

how the state machine is described. Consider, for example, a modified

form of our first state machine. This state machine, shown in Figure

11.6, has only three significant states. The fourth state (state D) is

shown, but there are no transitions into this state. State D is therefore

an illegal state.

Many (perhaps most) large state machines have a number ofsuch illegal

states. The task of the designer is to ensure that the machine is

prevented from entering an illegal state or is provided with appropriate

logic for escaping from the illegal state.

In a device with D-type flip-flops, the inherent default state (all registers

low) can be used to advantage to protect against illegal states. If we
implement this state machine with the same state values used pre-

viously (where state D had a value of 3, or binary 1 1) and use a device

with inverting outputs (such as the 16R4 PAL device), we will need to

provide a transition out of state D, since D represents the inherent

default state (and possibly the power-up state as well) of the machine.
The reset transition shown in the flow diagram (and in the ABEL design

description shown in Figure 11.7) represents this method of circuit

protection. For large state machines having many illegal states, how-
ever, the transition logic required to cover all illegal states may be
impractical.
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module am5

title 'Simple stat* machine with illegal state recovery'

Clk pin;
Hold pin;

Q1.Q0 pin iatype 'reg';

A - 0; B - 1; C - 2; D - 3;

equations

[Q1,Q0] .elk - Clk;

atata diagram [Q1,Q0]

atate As if IHold then A elae B;

state Bt if Hold then B else C;

state C: if Hold then C else A;

state D: goto A; "Illegal atate recovery

test vectors( [Clk, Hold] ->[Q1,Q0]

)

I.e., ]-> .x.; "Could power up to state D

I.e., ] -> .x.

;

[.O.i ]-> A;

[.O., ]-> A;

[ .c.

,

1 ] -> B;

[.O.i 1 ] -> B;

[.O.i ]-> C;

[.O.i 1 ]-> C;

[.O.i ]-> A;

end

Figure 1 1.7 AHK1. description loi state machine with Illegal state recovery

An alternative method that is useful it" the actual state values are not

important is to rearrange the values so that a valid state (either A, B,

or O has the default value. Doing so, however, may leave open the

question of whether the power up state of the machine is accounted for,

since different devices (even the same devices available from different

manufacturers) may power up to a register-low state, a register-high

state, or an unpredictable state.

It the state machine is being implemented in a device with a flip-flop

type other than I), particular care must be taken to ensure that all

possible states arc accounted for in some way or that some form of global

rOSOt is provided. Some TLA type devices (such as the PLS105 from
Signeties Corporation) feature a special product term that can be used
to detect and escape from illegal states. This complement array, as it is
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called, can also be emulated by using a device output in a manner
similar to that used for counter termination in Chapter 7.

11.4 ADDING STATE BITS TO SAVE LOGIC

We've seen many examples in which design modifications were made in

order to fit into the constraints of specific target architectures. Another
example for which such modifications are frequently required is the

situation when too many flip-flops or device outputs are required by a

design that uses classic state machine design philosophies. When a
state machine is designed, it's often easiest to create the state transition

circuitry first and then attach other circuitry, such as output decoding
circuitry, to the state machine later. This typically results in the use of

more I/O resources than are actually required to implement the circuit.

Let's look at a simple example of this situation. Consider the block

diagram for a decade counter and display decoder shown in Figure 11.8.

There are a number of possible ways to implement this circuit. If the

actual values of the state bits are important, the circuit would probably

be implemented in two pieces, with four flip-flops required for the

counter state machine and seven outputs required for the display

decoder circuit. This is the preferred method if you are limited in the

number of available flip-flops. The ABEL source file of Figure 11.9

describes the counter/decoder using this method.

An alternative method, if the actual state of the counter isn't important,

is to combine the function of the decoder with the state machine logic.

In this implementation, the state machine uses seven state bits, the

DO

Seven
Segment
Decoder
Driver

a

f

e

a

b

c

Reset

4-Bit

Counter

>

b

D1 c

gD2 d

Clock D3 e

f

g d

Figure 11.8 Decade counter and display decoder
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module CNTBCD
title 'Decade counter and 7 -segment decoder'

Clk, Reset, OE pin;
D3..D0 pin istype ' dc, reg, invert '

;

a,b,c,d,e, f,g pin istype 'dccom';

bed [D3..D0];
led » [a,b,c,d,e,£,g] ;

ON,OFF = 0,1; 'Inverted sense for common anode LEDs

equations

bed := (bcd.fb + 1) & (bcd.fb < 9) & ! Reset;

bed. elk = Clk;
led.oe = OE;

truth_table (bcd.fb -> [ a, b. c, d, e, f, g] I

-> [ ON, ON, ON, ON, ON, ON, OFF]

1 -> [OFF, ON, ON, OFF , OFF , OFF , OFF

]

2 -> [ ON, ON, OFF, ON, ON, OFF, ON]

3 -> [ ON, ON, ON, ON, OFF, OFF, ON]

4 -> [OFF, ON, ON, OFF, OFF, ON, ON]

5 -> [ ON, OFF, ON, ON, OFF, ON, ON]

6 -> [ ON, OFF, ON, ON, ON, ON, ON]

7 -> [ ON, ON, ON, OFF, OFF, OFF, OFF]

,

8 -> [ ON, ON, ON, ON, ON, ON, ON]

,

9 -> [ ON, ON, ON, ON, OFF, ON, ON],

test_vectors

(

Clk, OE, Reset] -> [bed, a, b. c, d, e, f , g] )

, • C • f o, 1 ]->[ o , ON, ON, ON, ON, ON, ON, OFF];
C • / o. ]->[ 1 ,OFF, ON, ON, OFF, OFF, OFF, OFF]

;

C • g o. ]->[ 2 , ON, ON, OFF, ON, ON, OFF, ON];
c • § o, ]->[ 3 , ON, ON, ON, ON, OFF, OFF, ON];

m C • g o. ]->[ 4 ,OFF, ON, ON, OFF, OFF, ON, ON];
•Ci| o, ]->[ 5 , ON, OFF, ON, ON,OFF, ON, ON];
c • §

mC • §

i,

o,

]->[.x
]->[ 7 , ON, ON, ON, OFF, OFF, OFF, OFF]

;

mC • § o. ]->[ 8 , ON, ON, ON, ON, ON, ON, ON]

;

, • c • § o, ]->[ 9 , ON, ON, ON, ON, OFF, ON, ON];

c • § o, ]->[ , ON, ON, ON, ON, ON, ON, OFF];
•c • § o. ]->[ 1 ,OFF, ON, ON, OFF, OFF, OFF, OFF]

;

end

Figure 11.9 Counter and decoder described with equations and truth table
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module CountLED
title '7-segment display decoder state machine'

Clk, Reset, OE pin;
a,b,c,d,e,£,g pin istype ' dc , reg

'

ON, OPP = 0,1;
led = [ a. b, C, d,

SO = [ ON, ON, ON, ON,

SI = [OFF, ON, ON, OFF,

S2 = [ ON, ON, OFF, ON,

S3 = [ ON, ON, ON, ON,

S4 = [OFF, ON, ON, OFF,

S5 = [ ON, OFF, ON, ON,

S6 = [ ON, OFF, ON, ON,

S7 = [ ON, ON, ON, OFF,

S8 = [ ON, ON, ON, ON,

S9 = [ ON, ON, ON, ON,

S15 = [OFF, OFF, OFF, OFF,

e, f, g]

ON, ON, OFF]
OFF, OFF, OFF]
ON, OFF, ON]

OFF, OFF, ON]

OFF, ON, ON]

OFF, ON, ON]

ON, ON, ON]

OFF, OFF, OFF]

ON, ON, ON]

OFF, ON, ON]

OFF, OFF, OFF]

equations
led. elk = Clk;
led.oe = !OE;

state_diagram
state SO
state SI
state S2

state S3

state S4

state S5
state S6
state S7
state S8
state S9

state S15

test_vectors (

led
: if Reset then SO else si;

: if Reset then SO else s2;

: if Reset then SO else S3;

: if Reset then SO else s4;

: if Reset then SO else s5;

: if Reset then SO else s6;

: if Reset then SO else s7;

: if Reset then SO else s8;

: if Reset then SO else s9;

: if Reset then SO else sO;

5: goto SO;

( [Clk, OE, Reset] -> led)

[ .c , 0, 1 ]-> SO;

[ .c , 0, ]-> SI;

[ .C , o. ]-> S2;

[ .c. , o. ]-> S3;

[ .c , o. ]-> S4;

[.c , o, ]-> S5;

[.c , 1, ]-> .z. ;

[.c , o. ]-> S7;

[.c , o, ]-> S8;

[ .c , o, ]-> S9;

[ .c , o, ]-> SO;

[ .0 , o. ]-> SI;
end

Figure 11.10 Counter and decoder described as a state machine
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value of which correspond to the ten output conditions of the decoder
circuit. Figure 11.10 shows this version of the design, which can be
implemented in a single small PAL device.

11.5 ONE-HOT STATE ENCODING

In a one-hot state machine, each state is represented by a unique bit,

so an n-state machine requires n state bits. In a synchronous state

machine, each state bit and corresponding state is represented by a
flip-flop. One-hot synchronous state machines require more flip-flop

resources than would otherwise be needed, but require much less

input-forming logic and feedback resources than a fully encoded state

machine.

In ABEL, one-hot state machines can be described using a symbolic

state diagram syntax. Figure 11.11 is an example of this alternative

method of description. This design is a symbolic (one-hot encoded)
version of the five-state state machine presented earlier in this chapter.

Because this design description results in a one-hot implementation,

the design requires a total of five flip-flips instead of the three previously

required. The trade-off is a decrease in the amount of combinational
logic required to decode the current state for transitions and for output
logic; it's only necessary to decode one fed-back flip-flop state to detect

when the machine is in a given state.

The only real drawback to a one-hot encoding strategy is that a one-hot

state machine can be in more than one state at a time. While some
designers actually use this fact to advantage when designing complex
machines, it is not generally recommended due to the difficulty of

debugging. Ifyou do not want your one-hot state machine to land in an
ambiguous state in which more than one state register is active, then

you must design the transition logic so that there is no possibility of

landing in an undefined state (one in which more than one flip-flop is

active.) It is also important to have a reset function in a one-hot state

machine, since it is unlikely that the target device will power up to a

valid single-bit state.

11.6 STATE MACHINE PARTITIONING

State machine partitioning is often required when the size of the

machine prohibits its being implemented in a target device due to

restricted numbers of output registers or product terms. Complex state
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module symbolic

Hold pin;

clock, reset pin;
inl,in2 pin;

out 1, out 2 pin istype 'com';

Qstate state_register;
A,B,C,D,E state;

equations

Qstate. elk = clock;

state_diagram Qstate

async_reset A: reset; "A is reset state

state A: outl = 1;

out 2 =1;
if Hold then A
else B;

state B: if Hold then B
else C;

state C: if Hold then C
else D;

state D: if Hold then D
else E;

state E: outl = inl & in2;

out 2 = inl $ in2;

if Hold then E
else A;

end

Figure 11.11 Symbolic state diagram language

machines with large numbers of transitions often result in large

amounts of transition logic for each state bit of the machine. Even if the

number of required state register flip-flops is small, the amount of

input-forming logic for those flip-flops may necessitate partitioning the

state machine into multiple blocks of logic. At other times, the reduction

in logic achieved through state machine partitioning is sufficient to

allow the state machine to be implemented in the target device when it

otherwise wouldn't have fit.

The result of partitioning a state machine is usually a larger number of

required state register flip-flops and unique states, but this increase in

resources is usually offset by reductions in the amount of required
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Baud
Clock

Transmit
Data

Start

Bit
DO D1 D2 D3 D4 D5 D6 D7 Stop

Bit 1

Stop
Bit2

Stop
Bit 2

Figure 11.12 Serial transmission of eight-bit data

input-forming logic. Combining state machine partitioning with careful

state assignments will result in the most efficient circuits.

To demonstrate how a state machine can be partitioned, we'll design a
serial transmitter circuit that is intended for an FPGA architecture. A
serial transmitter is a circuit that accepts eight bit wide parallel data

and sends the data in a serial stream at a rate corresponding to the

selected baud (bits per second) rate (Figure 11.12). To do this, the

Figure 11.13 Serial transmitter state machine
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transmitter (which is actually one-halfofa UART circuit) must first store

the eight bits of data, and then route each bit in turn to the output line.

The eight bits of data are packaged with a start bit and two or more stop

bits.

Figure 11.13 shows a state graph representing the operation ofthe serial

transmitter circuit. A corresponding ABEL design description is shown
in Figures 11.14, 11.15 and 1 1. 16. As written, the design requires only

four registers to represent the 16 possible states, but results in wide
input-forming logic that is not efficient to implement in FPGA devices.

module XMITl
title 'Serial transmitter'

// Inputs
DI7. .DIO pin;
Clk2,Clkl Pin;
Clr, Send pin;

// Outputs
D7. .DO pin istype 'reg';
SM3 . . SMO pin istype 'reg';
NextWord, TXD pin istype 'com'

;

// Sets
Data = [D7. .DO]

;

DataShift = [D0,D7 . .Dl]

;

Sreg = [SH3,SH2,SHl,SH0]

;

Detain = [DI7..DI0];
BaudClk = [Clkl,Clk2];

Equations
Sreg.C = Clkl;
Data.C = Clk2;

Sreg.AR i* Clr;
Data. AH i= Clr;

Declarations
II States

StopBitl = 0;

StopBit2 = If

StartBit 2;

SendDO 8;

SendDl = 9;

SendD2 = 10;
SendD3 = 11;

SendD4 = 12;
SendD5 = 13;
SendD6 = 14;
SendD7 = 15;

Figure 11.14 Serial transmitter design
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State _Diagram Sreg
State StopBitl: NextWord =1;

TXD = 1;

Data := Dataln;
goto StopBit2;

State StopBit2: NextWord =0;
TXD = 1;

Data := Dataln;
if (Send) then StartBit else StopBit2;

State StartBit: NextWord =0;
TXD = 0;

Data : = Dataln;
goto SendDO;

State SendDO: NextWord = ;

TXD = DO;

Data := DataShift;
goto SendDl;

State SendDl: NextWord = ;

TXD = DC-
Data := DataShift;
goto SendD2;

State SendD2 NextWord =0;
TXD = DO;

Data := DataShift;
goto SendD3;

State SendD3

:

NextWord = 0;

TXD = DC-
Data := DataShift;
goto SendD4;

State SendD4

:

NextWord = 0;

TXD = DC-
Data := DataShift;
goto SendD5;

State SendD5

:

NextWord = 0;

TXD = DO;

Data := DataShift

;

goto SendD6;

State SendD6 NextWord = 0;

TXD = DC-

Data := DataShift;
goto SendD7;

State SendD7

:

NextWord = ;

TXD = DC-
Data := DataShift;
goto StopBitl

;

Figure 11.15 Serial transmitter design file (part 2 of 3)
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Declarations

.C . ;

test

(

_vectors
[BaudClk ,Clr Send , Dataln -> Sreg ,

[ c , 1 ,
-> StopBitl,

[ c , 1 -> [StopBitl,

[ c , o -> [StopBit2,

[ c , o ,

Ah55 -> StopBit2,

[ c , ,
Ah55 -> StopBit2,

[ c , o 1 ,

Ah55 -> StartBit,

[ c , o 1 ,

Ah55 -> [SendDO ,

[ c -> SendDl ,

[ c ,
-> [SendD2 ,

[ c , r
-> ;SendD3 ,

[ c , o -> SendD4 ,

t c F
-> SendD5 ,

[ c ,

-> SendD6 ,

[ c F
-> SendD7 ,

[ c -> StopBitl,

[ c
t

A hOF -> [StopBit2,

[ c ,

A hOF -> ;stopBit2,

[ c ,
1 AhOF -> [StartBit,

[ c , 1 AhOF ->
i SendDO ,

[ c ,
->

; SendDl ,

[ c ,
-> ;SendD2

[ c ,
-> [SendD3 ,

[ c ,
-> ;SendD4 ,

[ c ,
-> ;SendD5 ,

[ c ,
-> SendD6 ,

[ c ,
-> [SendD7 ,

[ c ,
-> [StopBitl,

NextWord
1

1

1

1

TXD
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

end

Figure 11.16 Serial transmitter design file (part 3 of 3)

The serial transmitter has eleven states corresponding to the one start

bit, the eight data bits, and the two stop bits of the transmitted data.

The machine's default state is state StopBitl, and the design of the

transition logic ensures that the machine will always transition to the

initial state StopBit2 within ten clock cycles of power-up regardless of

the power-up state. In the absence of data to send, the machine remains
in state StopBit2 awaiting an assertion of the Send input. In the StartBit

state, a start bit (logic level 0) is sent to the serial output (TXD) while

the parallel data is loaded into the eight bit wide data register. In each
of the following eight states [SendO through Send7) the DO bit of the
data is sent to TXD and the data register is shifted one bit. At the
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DO D1 D2 D3 D4 D5 D6 D7

I M 1 i I 1 1

Shift TXD

Send
State

Machine

Register —

NextWord

4

Bit

Counter

Figure 11.17 Serial transmitter functional blocks

conclusion ofthe data output sequence, the NextWord output is strobed,

indicating that the next byte of parallel data can be loaded.

Written in the form shown, this state machine consumes an unneces-
sarily large amount of logic. Although any FPGA device is probably
capable of implementing the entire machine, the wide input-forming

logic that results from the design description would be very inefficient

and would have unnecessary speed penalties created when the transi-

tion logic is broken into the multiple levels needed to fit in an FPGA's
logic blocks. Carefully chosen state values could result in a decrease in

the amount of logic required for each state bit, but the most dramatic
savings in logic is obtained by increasing the number of flip-flops used
for the state register and reducing the amount of transition logic. This

can be done either by adding flip-flops to the state register set and
reassigning the state values (in the extreme case using one-hot encod-

ing, in which each state of the machine is represented by a unique
flip-flop) or by partitioning the state machine.

This state machine can be easily partitioned into smaller functional

units, resulting in an increase in the total number of states and a
decrease in the total amount of logic required. Figure 11.17 illustrates

the three functional parts of this design that are candidates for parti-

tioning.

For this redesign, we've chosen to isolate the eight states that corre-

spond to the data-shifting function, and implement these eight states

as a semi independent counter. Figure 11.18 shows state graphs for the

resulting two segments of the partitioned state machine. The first state

machine has four states: StopBitl , StopBil2, StartBit and Shift. The Shift

state replaces the eight shifter states of the previous state graph.

During this state of the primary state machine, the counter state

machine is active and cycles through its eight states. The data shifter
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Figure 11.18 Partitioned serial transmitter state machine

is also split into a separate functional unit, further simplifying the

design. The communication between the two machines is one-way; the

primary state machine has complete control over the counter state

machine, resetting the counter bits and monitoring their value during
shift-and-transmit operations.

In the corresponding ABEL design description shown in Figures 11.19

and 1 1.20, the counter and shifter portions are described using high-

level equations, while the remaining state machine logic is described

using ABEL's state diagram language. The new design requires one
additional registered output and one additional fed-back combinational
output. The eight-state counter and the data shift register are both
controlled from the primary state machine, which now has a total of

four states. The counter value represented by Bits is reset in state

StartBit (the expression Bits.RE = 10 results in ones being applied to the
reset inputs of all registers in the Bits set) and increments during state

Shift until the terminal count of seven is reached. The shifter logic is
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module XMIT2
title 'Serial transmit er with counter'

// Inputs
DI7. .DIO
Clk2,Clkl
Clr, Send

Pin;
pin;
pin;

// Outputs
D7. .DO

B2,B1,B0
SH1,SM0
KextWord,TXD
DataLoad

pin istype ' reg, buf fer '

;

pin istype ' reg_T, buffer '

;

pin istype 'reg, buffer'

;

pin istype 'com';
pin istype 'com';

// Sets
Bits
Data
DataShift
Sreg
Dataln
BaudClk

[B2. .BO]

;

[D7. .DO];

[0,D7. .Dl]

;

[SM1,SM0]

f

[DI7. .DIO]

;

[Clkl,Clk2];

Equations

// Data Shift Register
Data : = DataLoad & Dataln

# ! DataLoad & DataShift;
"Load
"Shift

// Bit Counter (T f/f)

Bits.t = Bits.q $ (Bits.q + 1);

Sreg.C = Clkl;
Data.C = Clk2;
Bits.C = Clk2;
Sreg.AR = Clr;
Data.AR = Clr;

Declarations
// States

StopBitl = 0;

StopBit2 = l;

StartBit = 2;

Shift = 3;

State_Diagram Sreg
State StopBitl: NextWord = 1

DataLoad = 1

TXD = 1

goto StopBit2

Figure 11.19 Partitioned serial transmitter design file (part 1 of 2)
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State StopBit2

:

NextWord = 0;

DataLoad = 1;

TXD = 1;

if (Send) then StartBit else StopBit2;

State StartBit: NextWord = 0;

DataLoad = 1;

TXD = 0;

Bits. RE = !0;

goto Shift;

State Shift: NextWord = 0;

DataLoad = ;

TXD = DO;

Bits.AR = 0;

if (Bits.q == 7) then StopBitl else Shift;

test vectors
BaudClk ,Clr, Send Dataln -> [

-C. ,- 1 , , -> [

• C. ,1 1 . , -> [

• C. ,. o , , -> [

.c. , , ,

Ah55 :
-> [

.c. ,. , ,

Ah55 :
-> [

.c. ,. o ,
1

,

Ah55 :
->

[

.c. , , 1
,

*h55 :
-> [

.c. , , ,
-> [

.c. , , ,
->

[

.c. , , o :
->

[

• C. , , , o :
->

[

.c. , , , o ->
[

• C. , , , o :
->

[

.c.
, , ,

->
[

.c. , , ,
-> [

.c. , , ,

Ah0F :
-> [

.c. , , ,

Ah0F :
-> [

.c. , , 1 ,

Ah0F :
-> [

.c. ,
o , 1

,
*h0F :

-> [

.c. , , , o ->
[

.c. , , o -> [

• C. , o ->
[

.c. ,, , o -> [

.c. , o ->
[

.c. , o o -> [

.c. , o , o ->
[

.c. , , -> [

[Sreg
[StopBitl
[StopBitl
[StopBit2
[StopBit2
[StopBit2
[StartBit
[Shift
[Shift
[Shift
[Shift
[Shift
[Shift
[Shift
[Shift
[StopBitl
[StopBit2
[StopBit2
[StartBit
[Shift
[Shift
[Shift
[Shift
[Shift
[Shift
[Shift
[Shift
[StopBitl

Bits
.X.

.X.

.X.

.X.

.X.

1

2

3

4

5

6

7

.X.

.X.

.X.

1

2

3

4

5

6

7

.X.

NextWord
1

1

1

1

DataLoad
1

1

1

1

1

1

1

1

1

1

1

TXD
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

End

Figure 11.20 Partitioned serial transmitter design file (part 2 of 2)
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controlled by the additional fed back output signal Databoad, which
indicates when the input data should be loaded rather than shifted.

Whereas the original (nonpartitioned) design would have required only
four state register flip-flops to represent the eleven possible states, the
partitioned design requires five: three for the eight-state counter, and
two for the controlling state machine. The benefit of this partitioning

strategy is that the input-forming logic is much less complex, and
determining an optimal state encoding for the two state machines is

much simpler. As an added benefit, the counter portion can be imple-

mented using T flip-flops, while the primary state machine can be
implemented using D flip-flops.

One side benefit to this redesign is that the primary state machine now
requires amaximum ofonly three clock cycles to stabilize after a random
power -up, rather than the ten cycles required previously. This is

reflected in the test vectors listed in the ABEL source file.

11.7 ASYNCHRONOUS STATE MACHINES

All the state machines described in this chapter have been synchronous
and used either D- or T-type flip-flops to provide the synchronization.

As described in Chapter 4, however, there is another class of state

machine, the asynchronous state machine, that does not require dedi-

cated flip-flops. While ABEL's state diagram language is primarily

intended for synchronous state machines, it can be used to describe

asynchronous state machines as well.

When describing an asynchronous state machine, you must observe

the rules for hazard avoidance described in Chapter 4. In particular,

you must ensure that the machine is self-stabilizing in each state and
that transitions between each state are unambiguous and hazard free.

Figure 1 1.21 is an ABEL design description for a pattern detector. This

pattern detector monitors the Data and Valid inputs and looks for the

binary pattern of 1 1010 on the Data input. The data on the Data input

is checked whenever the Valid input is strobed. Each time a correct

binary value is encounted (a value that continues the sequence) the

machine advances to the next state until either an incorrect bit value

is encountered or five correct values have been read.

The state diagram for this state machine is written using an alternative

form of state diagram, in which the state register set in the state diagram
header is replaced by two sets of signals. The set of signals on the left

is the current state of the machine (as observed on the inputs listed)



1 1 .7 ASYNCHRONOUS STATE MACHINES 199

module async
title 'Asynchronous state machine example - pattern detector'

// The pattern we want to detect is 11010. The data bit
//is monitored on input Data, and the data is checked when
// the input Valid is strobed.

Q5..Q0 node istype 'com';

Data, Valid pin;
DetectFlag pin istype 'com';

Qstate = [Q5..Q0];

Reset = [0,0,0,0,0,0]
Initial = [0,0,0,0,0,1]
Statela s [0,0,0,0,1,1]
Statel s [0,0,0,0,1,0]
State2a = [0,0,0,1,1,0]
State2 = [0,0,0,1,0,0]
State3a = [0,0,1,1,0,0]
State3 = [0,0,1,0,0,0]
State4a s [0,1,1,0,0,0]
State4 a [0,1,0,0,0,0]
Detecta s [1,1,0,0,0,0]
Detect = [1,0,0,0,0,0]

"Bridge state: Initial to Statel

"Bridge state: Statel to State2

state_diagram Qstate . pin- > Q s t at

e

state Reset: if (! Valid) then Initial
else Reset;

state Initial: if (Valid) then
if (Data) then Statela "1

else Reset;
else Initial;

state Statela: if ( IValid) then Statel
else Statela; "Wait until strobe goes low

state Statel: if (Valid) then
if (Data) then State2a "1

else Reset;
else Statel;

state State2a: if (IValid) then State2
else State2a; "Wait until strobe goes low

Figure 1.21 Asynchronous state diagram (part 1 of 2)
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state State2: if (Valid) then
if (!Data) then State3a "0

else Reset;
else State2;

state State3a: if (! Valid) then State3
else State3a; "Wait until strobe goes low

state State3: if (Valid) then
if (Data) then State4a "1

else Reset

;

else State3;

state State4a: if (! Valid) then State4
else State4a; "Wait until strobe goes low

state State4: if (Valid) then
if (!Data) then Detecta "0

else Reset;
else Stated-

state Detecta: if (! Valid) then Detect
else Detecta; "Wait until strobe goes low

state Detect: DetectFlag = 1;

if (Valid) then Reset "Wait for next bit
else Detect;

test_vectors

(

[Data .Valid ->
[

[ ,
-> [

[ o ->
[

[ o -> [

[ o ->
[

[ 1 , 1 -> [

[ 1 ->
[

[ 1 , 1 -> [

[ 1 ->
[

[ 1 ,
-> [

[ 1 1 -> [

[ .X. ,
->

[

[ 1 1 ->
[

t 1 , o -> [

[ 1 , 1 -> [

[ 1 r
-> [

[ o , 1 -> [

t o - o -> [

[ 1 , 1 -> [

[ 1 ,
-> [

[ o , 1 -> [

t o -> [

[ .X. , 1 -> [

Qstate DetectF
.X. , .X.

.X. , .X.

.X. , .X.

Initial , .X.

.x. ,, .X.

Statel
.X. , .X.

State2
.X. , .X.

.x. , , .X.

Initial
.X. , .X.

Statel
.X. , .X.

State2
.X. , .X.

State3
.X. , .X.

Stated
.X. , .X.

Detect 1

Reset

"Init sequence.

"Ready. .

.

"Got a 1

"Got another 1

"Oops, not a
"Try again. .

.

"Got a 1

"Got another 1

"Got a

"Got a 1

"Got a 0!

"Detect flag
"Back to Reset

end

Figure 1.22 Asynchronous state diagram (part 2 of 2)
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and the signals on the right side of the header represent the next state

ofthe machine. In this design, the input and output portions of the state

diagram header are the same. This results in the asynchronous feed-

back needed to construct an asynchronous state machine.

To provide hazard-free transitions between states, the state machine is

encoded using a modified form of one-hot encoding in which each bit

represents one of the six primary states in the machine. (This is not a
true one-hot encoding, however, because the machine must decode all

fed-back state bits simultaneously to determine the current state.) To
allow the state machine to transition from any state to the reset state

and maintain the single bit change rule described in Chapter 4, bridge

states are used between each primary state. Each time the machine
advances from one primary state to another (from State3 to State4, for

example) it must advance through a bridge state that holds state until

the Valid input changes from high back to low. Because the transitions

out of the primary states depend on a positive edge appearing on the

Valid input, and the transitions into the next primary state (and out of

the corresponding bridge state) depend on a negative edge appearing on
Valid, you can think of the Valid input as an asynchronous clock input

for this circuit.
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A Video Frame
Grabber
In this final chapter, we'll bring together the information provided in

earlier chapters by creating an actual application. The design we'll

present here is a video frame grabber. This circuit consists of an IBM
PC-compatible board that digitizes a single field of an external video

image (supplied from a camera or other video source) and allows it to

be displayed directly on a video monitor or accessed by software for

storage and display purposes. The design utilizes PLDs for control and
memory read/write functions. The frame grabber system includes a
software control program that runs under Microsoft Windows.

12.1 GENERAL DESIGN REQUIREMENTS

A standard NTSC video image (our frame grabber is designed for NTSC
video signals, but could easily be adapted for use with the European
PAL and SECAM standards) is composed of 525 scan lines, as shown
in Figure 12. 1. Each video image, orframe, is actually divided into two
interlaced fields of 262.5 lines. These fields are refreshed at a rate of

59.94 fields per second (the original RS-170 black and white standard
specified a simpler 60 fields per second rate, but this was changed in

the late 1950s when color was added). This results in a display rate of

just under 30 frames each second.

203
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Field 1 Field 2

Complete Frame

Figure 12.1 Components of a video image

To capture one frame of a live video image, high-speed circuits called

frame grabbers are used to digitize and store hundreds of samples of

video per scan line for the 525 lines of the image.

The video signals that we will be capturing are analog, so an A-D
converter must be used to convert the incoming video signal to digital

amplitude values. These sample values must be analyzed and stored in

RAM as quickly as they arrive in order to capture a live image. To provide

the A-D function, we have chosen a Samsung KSV3100A video chip.

(Other chips with similar functions are available from Sony and Brook-
tree.) The readily available Samsung chip is a complete single-chip video

system that includes an input preamp and clamping circuit, an 8-bit

video A-D converter with reference, and a 10-bit D-A converter.

To sample and store a single frame of video, the frame grabber circuit

must be able to recognize when a new field of the image has started and
when it has finished. Fortunately, the signals that identify the critical

portions of a video image are relatively easy to detect. The start of each
field is identified by a 20-line vertical blanking interval (the black bar
seen at the top of the picture on a poorly adjusted television or monitor).

Each scan line consists often microseconds (ms) of horizontal synchro-
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Figure 12.2 Video scan line

nization and color information (the color burst), followed by about 53
ms of video information (see Figure 12.2).

Choosing A Sample Rate

Sampling and digitizing an analog signal (of any type) can be done at a
variety of rates, depending on the quality required of the reconstructed

signal. If the highest frequency in the sampled signal (the Nyquist
frequency) is Jn, then the minimum sampling rate at which the signal

could theoretically be recovered is 2fh (the Nyquist rate).

The NTSC color burst frequency is 3.579545 megahertz (MHz). To
reproduce a color image, the video signal must be sampled at more than
twice the color burst frequency. In practice, sampling the video signal

at exactly twice the color burst frequency produces a poor-quality color

picture, producing correct colors for, at best, half the image.

For our frame grabber, we have chosen to capture only one field ofvideo,

rather than the complete frame. This results in some loss of vertical

resolution, but this loss isn't noticeable on a standard television screen.

To sample at over twice the Nyquist rate, each field requires more that

1 19,437 samples [2 X (3,579,545 / 59.94)].

Since the digitized image must be stored in high-speed RAM, one or

more appropriately sized RAM devices must be selected. The nearest

standard RAM size is 128K, which provides a total of 131,072 bytes of

storage. The ideal sample rate to fully use this amount of RAM would
be 7.856456 MHz [131,072 X 59.94]. The nearest standard frequency
oscillators available are 7.3728 MHz and 8.000 MHz. A 15.000 MHz
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oscillator divided by 2 will also produce a good sample rate. The
higher-speed 8.000-MHz oscillator will provide the best image, but will

cause an overflow of the storage RAM and resultant loss of some image
data.

If we sacrifice some image data and use the 8.000-MHz oscillator, the

result will be that the image is replayed too fast, since it's short by about
five scan lines. This doesn't seem to be a problem, since most televisions

are capable of synchronizing to a wide variety of marginal-quality

signals. The advantage of the higher sample rate is better color defini-

tion; the reconstructed picture simply looks better.

The 8.000-MHz frame grabber design can improved by "faking" the

missing five scan lines. One way to do this is to replay five of the existing

scan lines. These lines wouldn't be seen if they were part of the vertical

blanking interval. This could be done by adding an additional bit to the

frame grabber's address counter and counting to a value higher than
the highest RAM address. This would result in the RAM address
wrapping back around to zero.

Another approach is to synchronize the saved image with a live image,

using part of the live image's vertical blanking interval to fill out the

missing field data. In video parlance, this is known as genlocking. To
genlock the frozen image, the frame grabber circuit must monitor a live

video signal and wait for its vertical blanking interval to appear. When
this blanking interval is detected, the frame grabber must switch from
a live display mode to a frozen-image display mode for the remainder of

the field. At the completion of the (partial) field, the circuit must revert

to live display mode momentarily and then repeat the process.

Choosing a Sample Size

The number of bits in each sample determines the dynamic range, or

levels of intensity, that can be reproduced in the reconstructed image.

These levels of intensity are also known as the gray scale. A four -bit

sample can reproduce 16 levels of intensity, and eight bits can repro-

duce 256 levels. Most home video systems don't benefit from more than
eight bits, but studio quality equipment will reproduce better images if

ten bits are used. We have used eight bits of sample data in our frame
grabber circuit, since this is the size of the sample provided by the

Samsung video chip.
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Selecting RAM Chips

Many options are available to circuit designers who require high-speed

memory. Specialized frame memory chips exist for video frame storage

(the Hitachi HM53051P and Toshiba TC521000P chips, for example),

but these chips are expensive and aren't typically found on the shelves

of your local electronics supply store.

Dynamic RAMS could be used, but the multiplexed address lines add
to the design's complexity. For a frame buffer with no read-out capabil-

ity, the refresh circuitry of DRAMs isn't needed, somewhat simplifying

their use. The constant redisplay of the saved image results in an
automatic refresh, since each display sequence completely cycles

through all the frame grabber's memory addresses.

For this design, CMOS static RAMs were selected because of their

simplicity. Byte-wide static RAMs are low in cost and readily available.

The nonmultiplexed address inputs eliminate the need for the multi-

phased system clock that would be required if DRAMs were used.

With an 8.000-MHz sample rate, 125-nanosecond (ns) memory cycle

times are required. Commonly available 100-ns RAMs are therefore

sufficient for the design. The critical write cycle parameters that must
be provided for in the design are address setup and hold time and data
setup and hold time.

12.2 THE VIDEO FRAME GRABBER SYSTEM

Our video frame grabber system consists of a card that plugs into the

motherboard of an ISA-compatible bus and allows digitized images
(from a camera, VCR, or any other NTSC video source) to be displayed

on a standard video monitor or stored in Windows BMP format files for

later use. This board is controlled by software (written in C) that runs
under Microsoft Windows. The control circuitry for the video frame
grabber is implemented exclusively in PLDs.

The video frame grabber, as shown in the block diagram in Figure 12.3,

monitors the digitized video signal from the A-D converter and, on
command, scans and stores a single field of the live image. The frame
grabber board has two RCA-type phono jacks for the video input and
output signals.

When instructed by the controlling software to record an image, the
frame grabber circuit must first wait for and identify the beginning of a
field (indicated by the vertical blanking interval). When the blanking
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Figure 12.3 Video frame grabber block diagram

interval of the field is detected, the frame grabber begins sampling
digitized scan lines and writing them to the four 32K-byte onboard static

RAMs. When the image has been completely read, the contents of the

RAM chips can be either sent to the D-A converter to reconstruct a frozen

video image or be accessed by the controlling software for storage in a
BMP file.

Implementation

The first implementation decision made about this design, after choos-

ing the video and RAM chips, was that it would be implemented in

simple 20-pin PAL-type devices. This meant that the design would have
to be optimized for a limited amount of I/O resources. As the design

evolved, many fundamental design changes and trade-offs were made
to fit the design into the constrained architectures of this class of

devices.

The frame grabber circuit was developed using the PEEL 18CV8 elec-

trically erasable PLDs produced by ICT (International CMOS Technol-

ogy) and Gould. The 18CV8 is similar in architecture to the widely used
22V10, but has only 20 pins. Architectural features of the 18CV8
devices (their programmable output polarity and banked reset terms)

are used to advantage in this design. With slight design modifications,

the design could fit into simpler 20-pin PAL devices: one reasonable

alternative would be the GAL 16V8 from Lattice, National Semiconduc-
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ter, and other manufacturers. The simpler fixed-polarity 16R8 could

also be used if the active levels of some of the signals (in particular the

counter signals) were inverted.

Design Method

Using the block diagram as a guide, the circuit was developed. The
design was functionally partitioned, and the various modules were
initially developed independently. Some of these modules required a
single PLD, while others required multiple PLDs. As mentioned pre-

viously, electrically erasable devices were used during development.

This allowed design changes to be made and tried out with no waste of

chips and no need to wait for UV erasure.

One of the many advantages of using erasable PLDs is that test circuitry

can be added with little effort during debugging. This feature came in

handy when an early version of the design was moved to a system with

a faster bus speed. When the prototype board was installed in the faster

machine and tested, some of the scan lines that were read back from
the frame grabber were offset to the left or right. Because of the many
changes in the hardware and software that were made for the higher

-

speed system, the problem could have been anywhere. Software testing

indicated that the RAM address would sometimes fail to increment or

would double count.

The problem was successfully diagnosed by comparing the increment
address signal with the least significant bit ofthe address counter chain.

This comparator circuit was programmed into one of the erasable PLDs
that had an available output and access to both signals. Examination
of this test output with a simple logic probe confirmed the problem. The
timing problem was corrected by synchronizing the control signals from
the bus by means of a simple modification to one of the PLD circuits.

As design-level optimizations were identified, some circuit functions

that were initially placed in one module were moved to other modules
or spread between modules. The final design is implemented in a total

of six PLDs. Three of the devices are used for the RAM address counter
and memory chip select logic, while the remaining three are used for

bus interface, field detection, and frame grabber control logic.

Control Logic Module

The ABEL source file for the CONTROL module (shown in Figures 12.4

and 12.5) describes the state machine that controls the frame grabber
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Location U002
30 Aug 1993'

Module CONTROL;
title 'Video Frame Grabber Control
Michael Holley and David Pellerin
// Modes:
// M2 = Read Memory 1 = Frame Grab and Playback Mode
// Ml = Live Video 1 = Still Video
// MO = Hold Address 1 = Step Address

control
Osc , M2 , Ml , MO , ! DataEna
!IOW, !IOR,VertSync
ClkAD,Inc, !RAMOE, ! RAMWE
AdrClr , EnaAD, SI , VertClr
Inc , SI , VertClr , AdrClr , EnaAD

device 'P18CV8';
pin 1,2,3,4,5;
pin 6,7,8;
pin 14,13,12,19;
pin 15,16,17,18;
istype 'dc,reg, buffer'

Sreg = [SI, VertClr AdrClr EnaAD, Inc]

Live =
[ 0, , , ]

GenLock =
t 0, 1 , , , 1 ]

Reset =
[ 0, 1 , 1 , ]

Wait =
[ 0, 1 , 1 , 1 , ]

Play =
[ 0, 1 1 , 1 , 1 ]

Scan =
[ If 1 , r , 1 ]

Record =
[ 1. 1 , 1 , , 1 ]

Read =
[ 1. 1 1 , 1 , ]

Step =
[ 1, 1 1 , 1 , 1 ]

Equations
Sreg.AR = !M1;

Sreg.CLK = Osc;
ClkAD = Osc;

State_Diagram Sreg
State Live:

RAMWE =

RAMOE =

GOTO Scan

" Live video to monitor

State Scan: " Look for start of field
RAMWE = 0;

RAMOE = 0;

IF (VertSync) THEN Record ELSE Scan;

State Record: " Capture one field in RAM
RAMWE = !Osc;

RAMOE = 0;

IF (IVertSync) THEN Play ELSE Record;

" Display field on monitorState Play:
RAMWE 0;

RAMOE = 1;

IF !M2 THEN Reset
ELSE IF VertSync THEN Play
ELSE GenLock;

Figure 12.4 CONTROL.ABL (part 1 of 2)
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State GenLock: " Wait for next vertical sync
RAMWE 0;

RAMOE 0;

IF (VertSync) THEN Play ELSE GenLock;

" Clear address counterState Reset:
RAMWE = 0;

RAMOE 0;

IF (MO) THEN Reset ELSE Read;

State Read: " PC bus can read or write RAM
RAMWE IOW & DataEna;
RAMOE IOR & DataEna;
IF M2 THEN Play
ELSE IF 1M0 THEN Read
ELSE Step;

State Step: n Increment to next address
RAMWE 0;

RAMOE = 0;

GOTO Wait;

State Wait: " Wait for M0 to go low
RAMWE 0;

RAMOE 0;

IF MO THEN Wait ELSE Read;
Test_Vectors
( [Osc M2,M1 M0, VertSync , IOR IOW , DataEna -> Sreg ,Ri

[.C.i 1# o . o. , , o -> hive ,

[.C.i 1, - 0, r - ,
-> Live ,

[.C.i 1, 1 - 0, , , o -> Scan ,

I.e., If 1,- 0, r - ,
-> Scan j

[.C.i 1, 1,r 0, 1 r ,
-> Record

,

[ o , 1, 1.r 0, 1 , o - ,
-> Record ,

[ 1 1 1, 1,- o. 1 r - ,
-> Record

[.c. 4 1, 1, 0, 1 r - o
,

o :
-> [Record ,

[-C.j 1, 1, 0, - f o
,

o -> [Play ,

I.e., 1, 1,. o. 1 ,, o . o
,

o -> [Play ,

[.c, 1, 1,. o. 1 ,, . o
,

o -> [Play ,

[.C.j 1, 1. 0, o - o , ,
-> [GenLock,

[.C.i 1, 1. 0, o - ,. o , o :
-> [GenLock,

[.C.i 1, 1, o, 1 - o
,. o , o -> [Play i

[.C.i 0, 1, 1, o , . o , o -> Reset ,

[.C, 0, 1,. 1, . - o , o -> Reset
[.C.i 0, 1,- 0, o , o - ,

-> Read ,

[.C, 0, 1,- 0, , o - , 1 -> Read ,

[.c, 0, 1, o. o ,, 1 - , i
:

-> Read ,

[.C.i 0, 1,. o, o . o - 1 , 1 -> Read ,

[C.< 0, 1,. o, o
(, 1 - , o :

-> Read ,

[.C.i 0, 1,- 1, . o r , o :
-> Step ,

[C.i 0, 1,- 1, o ,, - , o -> [Wait ,

[.C.i 0, 1,- 1, , o - , o -> [Wait ,

[.C.i 0, 1 - 0, o ,r . o o -> [Read ,

[.C.i If 1.. o, . o - o
, o -> [Play

,

End

RAMOE

1

1

1

1

1

1

RAMWE

1

1

1

1

);

Figure 12.5 CONTROL.ABL (part 2 of 2)
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circuit. The state machine controller has nine possible states. While
these nine states could have been expressed using only four state bits,

this would have meant that an additional six outputs would have been
required to control the other frame grabber modules, for a total of ten

outputs. Since 20-pin PAL devices have, at most, eight outputs, this

wouldn't allow the state machine to be implemented in a single such
device. Since four of the control outputs are registered [VertClr, AdrClr,

EnaAD, and Inc), they can be combined with the state memory bits. The
RAMOE and RAMWE outputs must remain asynchronous.

Using the four existing registered outputs for state bits wasn't sufficient

to support the required state values (states Play and Step required the

same specific values for their outputs, as did Read and Wait), so a fifth

state bit output was added. The Si bit was used to distinguish between
the ambiguous states. The total number of outputs required then
became seven, which fit into a 20-pin PLD with one output left over.

This extra PLD output was later used as a delay element for the video

chip's clock. The various states of the frame grabber controller are

shown as a state graph in Figure 12.6.

The initial state of the machine is Live. During this state, the image is

routed directly through the video chip, and the RAM and address
counters are disabled. The VertClr is asserted in this state, resulting in

the clearing of the field detector. The state machine is reset by an
external signal, Ml , which is controlled by the PC software. The use of

an explicit reset signal simplifies the design of the state machine and
allows the frame grabber to be reset at any time.

The machine remains in state Live as long as the Ml mode control bit

remains low. When Ml goes high, the machine advances to the Scan
state. In this state, the field detector becomes active, and the machine
loops until the VertSync input is asserted by the field detector, indicating

that the vertical blanking interval has been detected. To save inputs to

the controller, the ATC (address terminal count) signal is not used
directly, but is instead monitored through the VertSync input generated

in the Field module.

When the start of the image is indicated, the machine advances to state

Record to begin capturing and storing video samples. The ATC input

from the RAMCOM module indicates that the RAM is full. When this

occurs, the machine advances to the Play mode.

In the Play mode, the A-D is disabled and the RAM output is instead

fed to the D-A section of the video chip. The address counter continues

to operate, so the saved image (missing five scan lines) is written to the

D-A. At the conclusion of the partial field, the state machine advances

to the GenLock state, where it waits for a vertical blanking interval to
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M2 & VertSync

M2 & MO

Figure 12.6 Frame grabber control state machine
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module FIELD
title 'Vertical Sync Detector Location U007
Michael Holley and David Pellerin 14 Sep 1993'

field
Osc
VertClr,Inc,ATC
AD7. .AD4

Q6. .QO

VertSync

device 'P18CV8';
Pin 1;

pin 2,3,5;
pin 6,7,8,9;
pin 18.. 12 istype 'reg';

pin 19 istype 'reg';

CountZ = [Q6..Q0];
Data = [AD7. .AD4, .X.

Zero = (Data == 0);

• X.];

Equations
CountZ := (CountZ. fb + 1) & Zero & VertClr & !ATC & Inc

# CountZ. fb & Zero & VertClr & !ATC & Unci

VertSync := (CountZ. fb == 127) & VertClr & SATC
# VertSync. fb & VertClr & SATC;

CountZ. elk = Osc;

VertSync. elk = Osc;

Test Vectors
( [Osc, VertClr, Inc , Data ,ATC -> [

[ .c. , ,0 , o , o ->
[

[.c, 1 ,0 / o . -> [

[ .c, 1 ,0 , o , -> [

I.e., 1 , 1 , o . -> [

[ .c. , 1 ,1 , o :
-> [

{•O.i 1 ,1 , o o :
-> [

{.C.i 1 ,1 , , o :
-> [

[ .c. , 1 ,1 f o o :
-> [

[ .c. , 1 ,1 , 33 - o :
-> [

{.G.i 1 ,1 , o :
-> [

[ -c. , 1 ,1 , o :
-> [

[ .c. , 1 ,1 , o r o :
-> [

[.c. , 1 ,1 , o o ;
-> [

[ .c. , 1 ,1 , o o :
-> [

[•C.i 1 ,1 , o i .
-> [

©const i=l; ©repeat 125 {

[.c, 1 , 1 , o ,
-> [

{.G.i 1 ,1 , o ,
-> [

[ .c. , 1 ,1 , , o
• -> [

{.G.i 1 ,1 , o ,
-> [

[ .c. , 1 ,1 , o
• -> [

[ .c. , 1 ,1 / o -> [

[ .c. , ,1 , o .
->

[

CountZ , VertSync] 1

]

],

],

1 , ]

2 , ],

3 , ],

4 ],

5 , ],

, ],

1 , ],

2 , 1,

3 , ],

4 ];

5 , ];

];

©expr :ill ]; ©const i=i+l;}
126 ],

127 ],

, 1 ]J

1 1 ],

2 1 ]j

],

End

Figure 12.7 FIELD.ABL
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be detected from the incoming synchronization signal. When the next

blanking interval appears, the machine returns again to the Play state

to repeat the process.

While the frame grabber controller is in the GenLock state (a period of

time corresponding approximately to the missing scan lines), the live

image is output directly to the D-A converter. Since the GenLock state

occurs during the vertical blanking interval, the momentary change in

video source isn't noticed. Since all saved images are genlocked with a
live video signal, there is never a loss of vertical synchronization, even

when new images are read and displayed.

The interface to the ISA bus is found in the remaining states of the frame
grabber controller. The M2 bit, asserted while in state Play, results in

the machine advancing to the Reset state, which clears the address

counter, and then to the Read state, in which a single byte of RAM data

is accessed.

MO is the address increment control used in the Read, Step, and Wait

states. During the Step state, the Inc signal is asserted, resulting in the

advancing of the address counter. The Wait state pauses the machine
until the control software requests another address increment via the

MO bit. This synchronization of the control software and the address
counters is necessary to avoid missed or multiple counts.

As implemented, the CONTROL module uses two specialized features of

the 18CV8: the clock input to the logic array and the global reset term.

For other PLDs, the clock can be connected to pin 9 in addition to pin

1 , and the reset logic can be expressed as a part of the state diagram.

Field Detector Module

The FIELD field detector module (shown in Figure 12.7) provides a signal

to the controller state machine that indicates the start and end of each
video field. This signal, VertSync, goes high after 128 synchronization-

level samples are counted. It goes low after the address counter reaches
its terminal count (indicated by the signal ATC).

The number of samples used for vertical blanking interval detection is

important. The horizontal synchronization pulse that begins each scan
line has a duration of 4.7 ms. This corresponds to about 38 samples at

our 8.00-MHz speed. During the vertical blanking interval the video
signal is at zero for about half the duration of a scan line (3 1 ms or 248
samples), and the signal is below the black level for 17 to 20 scan lines.

At 8.00-MHz, then, the number of samples required to correctly identify



216 Chapter 12: A Video Frame Grabber

Module Count 12

8

Title '7-bit counter with registered carry out Location U006
Michael Holley and David Pellerin 14 Sep 1993'

Count 12

8

Osc, Inc, AdrClr
A 6 . . AO

CarryA

device 'P18CV8';
pin 1,3,2;
pin 18.. 12 istype 'reg';

pin 19 istype 'reg';

H/L/Z/X/C = 1, 0, > Z . / .X., .C.;

CountA = [A6..A0];

Equations

CountA := (CountA. fb + 1) & AdrClr & Inc
# CountA. fb & AdrClr & line

#0 & ! AdrClr;

Inc
Hold
Clear

CarryA := (CountA. fb == 126) & AdrClr & Inc

# CarryA. fb & AdrClr & line

#0 & ! AdrClr;

Carry
Hold
Clear

[CountA, CarryA] .elk = Osc;

test_vectors
([Osc:,AdrCl r, Inc

[ C r , 1

[ c i 1 , 1

[ c i 1 , 1

[ c # 1 , 1

[ c # 1 , 1

[ c 9 1 , 1

[ c § 1 , o

[ c t 1 , 1

[ c t , 1

©const i=l; ©repeat

[ C , 1 ,1

[ c , 1 , 1

[ c , 1 , 1

[ c , 1 , 1

[ c , 1 , o

[ c , 1 , 1

[ c , 1 , o

[ c , 1 , 1

[ c , 1 , 1

->

->

->

->

->

->

->

->

->

->

123
->

->

->

->

->

->

->

->

->

CarryA CountA

1

2

3

4

5

5

6

©expr i; ] ; ©const i=i+l;

o , 124
125
126

o 126
1 , 127

1 , 127

o

o , 1

end

Figure 12.8 COUNT128.ABL
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Module Count 6

4

Title '6 Bit Counter with Carry Out Location U005
Michael Holley and David Pellerin 14 Sep 1993'

Count 6

4

Osc , Znc , AdrClr, CarryA
A12. .A7

CarryB

device 'P18CV8';
pin 1,3,2,9;
pin 18.. 13 istype 'reg';
pin 19 iwtype 'com';

H,L,Z,X,C 1, 0, .Z., .X., .C;

CountB = [A12..A7];

Equations

CountB := (CountB. fb + 1) & AdrClr & Inc & CarryA Inc
# CountB. fb & AdrClr & Inc & ! CarryA Hold
# CountB. fb & AdrClr & line Hold
#0 & JAdrClr; " Clear

CarryB = (CountB. fb == 63) & AdrClr & Inc & CarryA;

CountB. elk = Osc;

test_vectors
( [Osc, AdrClr, Inc, CarryA

[ c , , 1

[ c , 1 , 1

[ c , 1 , 1

t c , 1 , 1

[ c , 1 , 1

t c , 1 , 1

[ c , 1 , o

[ c , 1 , 1

[ c , , 1

©const i=l; ©repeat 60

[ C , 1 , 1 ,

[ c , 1 / 1

[ c , 1 , 1

[ c , 1 , 1

[ c , 1 , o

[ c , 1 , 1

[ c , 1 , o

[ c , 1 , 1

[ c , 1 / 1

->

->

->

->

->

->

->

->

->

->

->

->

->

->

->

->

->

->

->

CarryB

1

CountB]

)

1

2

3

4

5

5

6

<?expr if] J ©const i=i+l;

61

62

63

63

1

2

end

Figure 12.9 COUNT64.ABL
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Module RAMCON
title 'RAM Chip Enable Control Location U004
Michael Hoi ley and David Pellerin 14 Sep 1993'

ramcon
Osc, AdrClr, Inc
CarryB
A14,A13,ATC
1CE3, ICE2, 1CE1, !CE0

device 'P18CV8';
pin 1,2,3;
pin 9;

pin 18,13,12 istype Teg';
pin 17,16,15,14 istype 'reg';

CE [CE3,CE2,CE:i CEO];
CEshift [CE2,CE1,CE0 CE3];
CountC [A14,A13];
CarryC (CountC. fb •« 3) 6 CarryB;

Equations
CountC : (CountC. fb + 1) ft AdrClr 6 Znc & CarryB n Count

« CountC . fb 6 AdrClr & Inc 6 1 CarryB H Hold
* CountC . f

b

6 AdrClr & line n Hold
* ft ! AdrClr; n Clear

CE : = CEshift . f

b

6 AdrClr & Inc 6 CarryC fi Shift
* CE.fb & AdrClr & Inc ft ! CarryC n Hold
« CE.fb 6 AdrClr 6 line n Hold
* [0,0,0,1] & ! AdrClr; n Clear

ATC : (CE.fb - Abl000) ft (CountC. fb
6 Inc ft AdrClr 6 CarryB;

3)

[CountC, CE, ATC] .elk = Osc;

test vectors
[Osc , AdrClr , Inc

,

, CarryB] -> CountC CE3 CE2 ,CE1 CEO ATC] )

[.C, , 1 f 1 ] ->
,F , F ,F 1 ,- ];

[.C, 1 , 1 ,r 1 ] ->
: i , F , 1 . ];

L * *— • / X / X f 1 ] -> 2 ,. o
, F , 1 ,f ];

L • *» • / X / X r 1 ] -> 3 ,. o , . o
,F 1 ,f ];

L • t- • / X / X r 1 ] ->
: o , , , 1 . o , ];

I.e., i , i ,f 1 ] -> i <. o , F 1 , ,. ];

[.C, 1 , 1 ,t 1 ] -> 2
,- o , . 1 , , ];

L iL i / X / X r 1 ] ->
: 3 ,. o , F 1 , ,. ];

L . (— . / X / X t 1 ] ->
: o , F o

, ];

[.C, 1 , 1 ,t 1 ] ->
: i ,. o

, , F ,f ];

[.c, 1 , r 1 ] -> i .F , F F ,f ];

L • *— • / X / X f 1 ] -> 2 ,F , F . o ,f ];

L • » • # X / X r 1 ] -> 3 ,F , , F ,f ];

I.e., 1 , 1 r 1 ] ->
F F ,f ];

[.C, 1 , 1 r ] ->
[ o F F f ];

I * *— - i X / X r 1 ] -> 1 . F . o ,f ];

L • *— • i X / X r 1 ] -> 2 F . o ,f ];

[.C, 1 , 1 r 1 ] -> 3 , . F ,f ];

I.e., 1 , 1 F 1 ] -> F , . o ,- 1 .f 1 ];

[.C, 1 , 1 F 1 ] -> 1 F F , 1 ];

End

Figure 12.10 RAMCON.ABL
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the vertical blanking interval is between about 40 and 240 samples. We
chose 128 for this design, since a 128-state counter is trivial to design.

Address Counter and RAM Control

The frame grabber, as described earlier, must sample and store 131 ,072

bytes of data. The data must be written into the static RAM chips, of

which there are four in this design. To do this, the frame grabber
requires an address counter and chip select logic. An address counter

that increments beyond 256 states is impossible to construct using only

the eight outputs found in a 20-pin PAL (in fact, a counter with more
than 128 states is impossible to implement in most 20-pin PALs because
of product term limitations), so it was necessary to split the frame
grabber's large address counter into three smaller counters. Two of the

counters are found in modules COUNT128 and COUNT64; the third and
smallest of the counters is combined with the chip select logic in the

RAMCON module. The three ABEL source files for these modules are

shown in Figures 12.8, 12.9 and 12.10.

The three counters are all described using a common format, and all

have three modes of operation: increment, hold, and clear. The AdrClr
input, when asserted, causes all counters to reset. In addition, the chip

select (consisting of the outputs CE3 through CEO) is reset to its initial

state, where CEO is asserted. The counter segments will hold whenever
their carry inputs {CarryA, CarryB, or CanyQ are asserted by the
previous counter segment.

The Inc input is used during read and write operations when the memory
addressing is being controlled from the PC-resident software. At these

times, the counter must operate in a single-step mode, since the
software can't operate at the speed of the frame grabber circuitry.

Chip select is provided by using a four -bit shifter in the RAMCON
module (Figure 12.10). This eliminates the need for the most significant

two bits of the address counter. If a single 128K RAM chip were used,
the chip select shifter logic would be eliminated by a larger (17-bit)

counter chain.

PC Interface Module

The final module of the frame grabber circuit provides the interface to

and from the control software. The PCHOST module decodes the hexa-
decimal addresses 300 to 3 IF from the bus (this is the address range
of the IBM prototyping card). Writing to addresses 310 to 317 (from the
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Module PCHOST
title 'PC Interface and I/O address decode Location U001
Michael Holley and David Pellerin 14 Sep 1993'

pchost
A9 , A8 , A7 , A6 , A5 , A

4

A2,A1,A0
AEN, !IOR, 2IOW
M2,M1,M0

! DataEna

device 'P18CV8';
pin 3,4,5,6,7,8;
pin 13,12,9;
pin 2,19,1;
pin 16,15,14 istype 'reg';

pin 18 istype 'com';

Addr = [A9 . .A4, .X. , .X. , .X. , .X.] ;

Address = [A9 . . A4 , .X. , A2 . . A0]

;

CtrlPort = (AEN & (Addr == Ah310));
DataPort = (AEN & (Addr == Ah300));

Equations

[M2. .MO] := CtrlPort & [A2..A0]

# ICtrlPort & [M2..M0].fb;
"Set M2..M0
"Hold M2. .MO

[M2. .MO] .elk = !IOW;

[M2. .MO] .oe = !OEl;

DataEna = IOW & DataPort & !M2.£b
# IOR & DataPort & !M2.£b;

test_vectors
( [IOW, IOR, AEN Address] -> M2,l11,1^0, DataEna]
[•C.j , 1 Ah310] -> 0, 0, 0, ]

[•C.j ,
Ah311] -> 0, 0, 0, ]

[.C.j , 1
,

Ah311] -> 0, o, 1, ]

[.C.j , 1 Ah312] -> 0, 1, 0, ]

[.C.j , 1 Ah313] -> 0, 1, 1, ]

[.C.j , 1 Ah324] -> 0, 1, 1, ]

[.C.j , 1
(

Ah314] -> 1/ 0, 0, ]

[•C.j , 1 ,
Ah315] -> */ 0, 1, ]

[•C.j , 1 Ah316] -> 1/ 1, 0, ]

[•C.j , 1
,

Ah317] -> * / 1, 1, ]

[ o , 1 , 1 Ah300] -> 1/ 1, 1, ]

[ 1 . , 1 ,

Ah300] -> i 9 1, 1, ]

[.C.j , 1 Ah310] ->
. o, 0, 0, ]

[ , 1 , 1
,

Ah300] -> 0, 0, 0, 1 ]

[ 1 . , 1 ,
Ah300] -> 0, 0, 0, 1 ]

[ , , 1 ,
Ah300] -> 0, 0, 0, ]

[ , 1 ,

Ah300] -> 0, 0, 0, ]

end

Figure 12.11 PCHOST.ABL
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frame grabber control software) sets the state of the three mode control

bits [M2, Ml, and MO). Address 300 contains the byte-wide data that

are read from or written to the current address of the frame grabber's

RAM.

Note that there is no provision for writing to the frame grabber's memory
randomly; all memory read and write operations must occur sequen-
tially, regardless ofwhether the memory is being accessed by the frame
grabber controller or from the interface module.

The PCHOST module uses pin 1 of the 18CV8 {IOW) both for clocking

of the mode control bits [M2 through MO), and as a combinational input

for controlling DataEna. Unlike most PLDs, the 18CV8 allows the global

clock pin to be fed into the logic array for applications such as this. If

a device such as GAL 16V8 were used, the IOW would have to be split

between two input pins. (In this case, pin 17 is unused and could

therefore be used for this purpose). Ifa simpler device such as the 16R4
were used, the RAM write feature would have to be omitted. Figure 12.11

shows the ABEL source files for the PCHOST module.

The Complete Frame Grabber

A schematic of the complete video frame grabber board is shown in

Figures 12.12 and 12. 13. As implemented, the circuit requires six PLDs,
three fixed-function TTL chips, the four 32K static RAMs, and the video

chip. Ifmore complex PLDs had been used, the total number ofpackages
could have been reduced. For this version of the design, it was decided

that the six low-cost PLDs were the best compromise.

12.3 FRAME GRABBER CONTROL SOFTWARE

The PC-resident frame grabber software was developed using Microsoft

C; complete source listings can be found in Appendix D. The software

accesses the video frame grabber at hexadecimal addresses 310 through
317. These are the addresses used to trigger the mode control bits MO,
Ml, and M2.

The video frame grabber control program reads and writes the frame
grabber's onboard memory using PC memory address 300 as the data
address for each image sample. The images (either live or frozen,

depending on the operation selected) are sent to the frame grabber's

video output jack, but are not displayed on the PC's monitor. Since all

displayed images must be genlocked with a live image, the video input
jack ofthe frame grabber board must at all times be connected to a valid
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Figure 12.12 Video frame grabber schematic (part 1 of 2)



12.3 FRAME GRABBER CONTROL SOFTWARE 223

B[7:0]{1}'

A[15:0]{1}.

RAMWE{1}-
RAMOE(1}-

CE2{1}-

CE3{1}-

M2{1}-
M1 {1}-

M0{1}-
DataEna{1}-

IOW{1}-
IOR{1}-

AD7{1)
AD6{1)
AD5{1)
AD4(1}

ClkAD{1}-

EnaAD(1}-

ML
2L
3L
41

5L

8L
21

A[10

Af11

ah 2

mi
Af14

TC55257

AO
A1

A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14

OO
01
02
03
04
05
06
07

OE
WE

U010

BfO

Bf1

Bf2m
B[4

B[5

B[6

Bf7

B[7:0]

CE1

RAMWE
RAMOE

CONTROL
Osc
M2
M1
MO

RAMOE

DataEna
IOW
IOR
VertSync

U002

RAMWE
ClkAD
EnaAD

Inc

AdrClr

S1
VertClr

ua
AM

±m.
mi
Af4l

Af5l

_A[6]_

A[7l

Af8l

Af9l

A[10L
AM 11

At 121

AMJL
A[14L

AO
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11

A12
A13
A14

TC55257

00
01
02
03
04
05
06
07

CE
OE
WE

U011

JI2L
BM
BT2

BI31

B[4l

Bf51

m
CEO

Af1S-01

Inc

AdrClr

VertClr

VertSvnc

FIELD

Osc
Inc

ATC
VertClr

AD7
AD6
AD5
AD4

VertSync

06
Q5
Q4
Q3
Q2
Q1
QO

U012

OSC

8.00 MHz

U003

Osc Osc

ClkAD
EnaAD

RAMCON
CE3
CE2

Osc
Inc

AdrClr

CarryB

U004

CamB
ATC

Osc
Inc

AdrClr

CarryA

COUNT64
CarryS

A12
A11
A10
A9
A8
A7

U005

CarryA

COUNT128
CarryA

A6
A5
A4
A3
A2
A1

AO

Osc
Inc

AdrClr

U006

CE3
CE2
CE1
_£E0_

AM51
ah 4i

AM 31

AJIg]

AMI]
A[101

A[91

_A[8L

^LZL

-<

Figure 12.13 Video frame grabber schematic (part 2 of 2)
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video signal, such as the output of a video camera or television. The
frame grabber control program accepts the following single-character
commands:

L display live image

F freeze image

W write image to disk file

R read image from disk file

Q quit

Converting Saved Images to Windows BMP Format

In addition to the frame grabber control program described here,

Appendix D also contains a program that will convert the images to a
fixed-size Windows BMP format file. This file format can be read bymany
Windows applications, including Windows PaintBrush.
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Gilbert, Alfie, Video Frame Grabber, Programmable Logic Handbook, 4th
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The ABEL
Language
ABEL (Advanced Boolean Expression Language) is a language optimized

for, but not limited to, the description of circuits to be implemented in

PLDs and FPGAs. Version 1.0 of the language was introduced by Data
I/O Corporation in 1984. This first version was intended solely for the

description of PLD-based logic circuits, and the simplicity of the original

language reflected the relative simplicity of the programmable devices

available at that time. As devices became more complex, ABEL was
updated accordingly. In version 4 the language was significantly over-

hauled, allowing it to be used for general-purpose logic design inde-

pendent of a specific target device or technology. Version 5 added
significant new capabilities for the description of larger designs.

The version of ABEL design software that is provided with this book is

version 5.0. All the language features of version 5.0 are available.

(Versions of ABEL later than version 5.0 include support for hierarchy

and multiple modules, but these features are not described in this

book.)

A.1 LANGUAGE OVERVIEW

Hardware design using ABEL is similar in many respects to software

design using languages such as Pascal or C. ABEL designs are entered

225
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with a text editor and are then compiled into an internal form that may
be merged with other design elements, optimized, and executed (via

simulation) before implementation in hardware.

ABEL differs from software programming languages in that it is used to

describe functions that are inherently parallel. All statements in an
ABEL design may be thought of as being executed at the same time.

This is particularly important to realize when describing sequential

circuits. The sequential operation of a circuit is never a function of the

order in which ABEL language statements describing that circuit are

entered.

ABEL, like other harware description languages (HDLs), provides dif-

ferent textual entry formats that can be combined as needed to meet
the specific requirements of the design. The primary description meth-
ods available in ABEL are high-level equations, truth tables, and state

diagrams. Within an ABEL module, one or more of these three descrip-

tion methods are used to completely specify the desired circuit.

ABEL Modules

The basic design unit inABEL is the module. A typical PLD-based design
consists of a single module, while more complex FPGA-based designs

may consist ofa number ofmodules that are combined during the device

fitting process.

An ABEL module consists of three primary types of items: declarations,

logic descriptions, and test vectors. To describe a design, an ABEL
module must have signal (PIN or NODE) declarations and at least one
logic description (equations, truth table, or state diagram). Test vectors

are optional.

The declarations, logic descriptions, and test vectors can appear in any
order in the ABEL source file, as long as all referenced design elements

(signals, constants, macros, and so on) are declared before being used.

A single ABEL source file can contain multiple ABEL modules. In this

case, the modules will be processed by the language compiler in the

order encountered. Since there are no hierarchy features in the version

of ABEL supplied with this book, there is no linkage between multiple

ABEL modules located in the same ABEL file, and the results of

processing will be the same as if the modules had been processed

separately from individual source files.

A sample ABEL source file is shown in Figure A. 1. This source file

includes one DECLARATIONS section, one EQUATIONS section, and
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module muxl2t4
title '12 to 4 multiplexer
Michael Holley and David Pellerin'

declarations

a3. .aO PIN;
b3..b0 PIN;
c3. .cO PIN;
Bl.mO PIN;

y3..y0 PIN ISTYPE '

A . [a3. .aO]

;

B [b3..b0];
C [c3. .cO]

;

Y a [y3..y0];
Select X [sl,80]

;

X,H,L .x. ,10,0;

equations

T - (Select - 1) 6 A
# (Select --2) 6 B

• (Select -- 3) ft C;

com'

;

te«t_vectors (

end

Select, A, B, C] -> Y)

1 , 1, X, X] -> 1; "Select 1, A
1 ,10, X, X] ->10;

1 , 5, X, X] -> 5;

2

2

2

3

3

3

X, 3, X] -> 3; "Select 2, B
X, 7, X] -> 7;

X,15, X] ->15;

X, X, 8] -> 8;

X, X, 9] -> 9;

X, X, 1] -> 1;

'Select 3, C

Figure A.1 Design file for a 12-to-4 multiplexer

one TEST_VECTORS section. The DECLARATIONS section includes pin

declarations and set declarations that are used in the subsequent
EQUATIONS and TEST_VECTOR sections. This sample ABEL source

file describes a 12-to-4 multiplexer. The specifics of this design (and

many others) are discussed in Chapters 6 through 12.
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Basic Syntax

ABEL is a free-format language, meaning that the exact positioning of

keywords and other source file elements is not significant to the

language compiler. Spaces, tabs, newlines, and other white-space char-

acters are ignored except when they serve to delimit the various

elements of a design description. (Exceptions to this are found in the

@IFB, @IFNB, ©IFIDEN, and ©IFNIDEN directives, which are sensitive

to white-space characters.) Individual lines in the source file may not

exceed 150 characters.

Keywords, identifiers, and numbers must be separated from other

syntax elements by at least one white-space character (space, tab, or

newline), or by a nonalphanumeric delimiter such as a comma, colon,

or semicolon, or by an expression operator, right or left parenthesis or

bracket, or any other nonalphanumeric character.

Keywords

Figure A.2 lists the keywords recognized by the ABEL compiler. These
keywords are reserved and may not be used as identifiers in an ABEL
source file. Keywords may be entered in either upper, lower, or mixed
case.

Identifiers

Identifiers are used to give unique names to modules, signals, con-

stants, macros, and dummy arguments within macros. Identifiers may
be entered in upper, lower, or mixed case, but are case sensitive when
processed. This means, for example, that the identifier FRED is not the

same as the identifier Fred. An identifier consists of a string of alpha-

numeric characters that does not exceed 32 characters in length.

Alphanumeric characters include the uppercase letters A through Z,

lower case letters a through z, the numeric characters through 9, and
the character _ (the underscore character). Identifiers must not begin

with a numeric character.

A.2 DECLARATIONS

Declarations are entered at the beginning of the ABEL module (after the

MODULE, TITLE, and FLAGS statements and before any logic descrip-
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CASE DECLARATIONS
DEVICE ELSE
ENABLE ENDCASE
END EQUATIONS
ENDWITH FUSES
FLAGS IF

GOTO LIBRARY
MACRO MODULE
NODE OPTIONS
PIN STATE
STATE_DIAGRAM THEN
TITLE TRACE
TRUTH TABLE WHEN
WITH

Figure A.2 ABEL keywords

tion section) or in a DECLARATIONS section. Design elements such as

signals and constants must be declared in a declarations section before

they are used in a logic description.

Device Declarations

ABEL allows a target programmable logic device type to be declared in

a device declaration. Device declarations are optional. Ifused, they must
appear before any pin or node declarations are made. The following

statement declares a device (an 18CV8 configurable PAL device) that

will be used for a design:

mydevice DEVICE P18CV8';

Declaring a device in the ABEL source file does not restrict the design

to that particular device, but may imply certain attributes (such as

register types and output inversions) that can restrict the ability of

device fitters to map the design into alternative device types.

Pin and Node Declarations

ABEL supports two basic types of signals: pins and nodes. A pin is a
signal that is accessible outside of the current module (on a device pin,

for example), while a node is a signal that may be buried or removed (by
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collapsing) during the device fitting or synthesis process. All pins and
nodes must be declared before they are used. The following statements
are examples of pin and node declarations:

il,i2,i3 PIP- "Inputs
Sync_pulse PIN ISTYPE 'com'; "Comb output
Buf2,Bufl NODE ISTYPE 'reg'; "Buried registers
q7. .q0 PIN ISTYPE 'reg'; "Use a range
D3,D2 # D1 # D0 PIN 2,3,4,5; "Pin numbers

Pin and Node Numbers

Signal declarations may include pin numbers, as shown in the decla-

ration for D3 through DO in the preceding example. When specified,

these pin numbers are written to the compiler-generated intermediate
file for use by a device fitter. The pin numbers are not otherwise

significant to the compiler unless a device name has also been specified

for the module. If a device name has been specified, then the compiler

will imply signal attributes (such as register types, or the output
inversion attributes 'buffer' and 'invert') based on information stored in

the ABEL device database.

Inputs and Outputs

Signal declarations in ABEL do not provide any way to explicitly state

which signals are inputs, which are outputs, and which are bidirec-

tional. This information is determined by how each signal is used in the

design description. In the examples presented in this book, we follow

the convention of assigning signal attributes (using an ISTYPE state-

ment) to all signals that will be used as outputs in the design. This helps

to make the design more readable, even when the signal attributes may
not actually be needed.

Signal Attributes

Output signal declarations may include an ISTYPE modifier or ISTYPE
statement. ISTYPEs allow signal attributes to be assigned to signals.

An ISTYPE modifier is an ISTYPE keyword and attribute string that

follows the PIN or NODE keyword (and pin or node numbers, if any):

q3..q0 PIN ISTYPE 'reg';
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When a list of signals is specified in the declaration (as just shown), the

ISTYPE modifier applies to all signals in the list.

An ISTYPE statement is simply another form of the ISTYPE modifier

that can be used for signals that have already been defined in a PIN or

NODE signal declaration. The previous statement, for example, could

have been written as

q3..q0 PIN;

q3..q0 ISTYPE 'reg';

Multiple attributes may be combined within one ISTYPE statement by
separating the attributes by commas within the single quote characters

as follows:

MyOutput PIN ISTYPE 'reg,buffer '

;

The following ISTYPE signal attributes are available in ABEL.

ISTYPE 'reg'

The output is registered using a level-sensitive latch or clocked D-type

flip-flop and will be described using pin-to-pin logic descriptions. (The

:= and :> assignment operators are used in logic descriptions to describe

pin-to-pin registered outputs.) Whether the design is implemented
using clocked flip-flops or level-sensitive latches depends on the type of

clocking specified for the design. (The .CLK dot extension described later

indicates a clocked flip-flop; the .LE dot extension indicates a latch.)

When an output signal of type 'reg' is processed, the corresponding
equations produced by the language compiler are pin-to-pin.

ISTYPE 'reg_D'

The output is registered via a clocked D-type flip-flop and will be
described using flip-flop stimulus (detailed) logic descriptions. To de-

scribe the flip-flop stimulus for this output, you must use the .D signal

dot extension. When an output signal of type 'reg_D' is processed as a
state diagram state register, the corresponding equations produced by
the language compiler will use the .D dot extension. See also the 'invert'

and 'buffer' attributes.
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ISTYPE 'regJT

The output is registered using a clocked toggle (T flip-flop) memory
element. T-type outputs must be described using flip-flop stimulus
(detailed) logic descriptions. To describe the stimulus for this registered

output, you must use the .T signal dot extension. When an output signal

of type 'reg_T is processed as a state diagram state register, the
corresponding equations produced by the language compiler will use
the .T dot extension. See also the 'invert' and 'buffer' attributes.

ISTYPE 'reg_SR'

The output is registered using a clocked set-reset (SR flip-flop) memory
element. SR-type outputs must be described using flip-flop stimulus
(detailed) logic descriptions. To describe the stimulus for this type of

output, you must use the .S and .R dot extensions. When an output
signal of type 'reg_SR is processed as a state diagram state register, the

corresponding equations produced by the language compiler will use
the .S and .R dot extensions. See also the 'invert' and 'buffer' attributes.

ISTYPE 'reg_JK'

The output is registered using a clocked JK flip-flop. JK-type outputs

must be described using flip-flop stimulus (detailed) logic descriptions.

To describe the stimulus for a JK flip-flop, you must use the .J and .K

dot extensions. When an output signal of type 'reg_JK' is processed as

a state diagram state register, the corresponding equations produced
by the language compiler will use the .J and .K dot extensions. See also

the 'invert' and 'buffer' attributes.

ISTYPE 'reg_G'

The output is registered using a D flip-flop with a gated clock. G-type

outputs must be described using flip-flop stimulus (detailed) logic

descriptions. To describe the stimulus for a G-type registered output,

you must use the .D and .CE (clock enable) dot extensions. When an
output signal of type 'reg_G' is processed as a state diagram state

register, the corresponding equations produced by the language com-
piler will use the .D and .CE dot extensions. See also the 'invert' and
'buffer' attributes.
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ISTYPE com'

The output is combinational. All combinational outputs are inherently

pin-to-pin. When describing the logic for a combinational output, you
must use the = or -> assignment operators.

ISTYPE 'buffer'

The registered output signal is not inverted at the output pin. If 'buffer'

is specified, it indicates that the signal does not have any inversion

between the output of the flip-flop and the actual output pin. A 'buffer'

or 'invert' attribute is usually required if you are describing an output
using detailed flip-flop stimulus (using the .D, .T, .J/.K or .S/.R dot

extensions) or are depending on specific reset or power-up behavior. If

you do not specify 'buffer' or 'invert' for outputs that are described using
detailed flip-flop stimulus, then the language compiler will produce
warning messages and the results of your circuit will depend on how
your design is actually implemented in hardware.

ISTYPE 'invert'

The registered output signal is inverted at the output pin. If 'invert' is

specified, it indicates that the signal has an inversion between the

output of the flip-flop and the actual output pin. A 'buffer' or 'invert'

attribute is usually required if you are describing an output using
detailed flip-flop stimulus (using the .D, .T, .J/.K or .S/.R dot exten-

sions) or are depending on specific reset or power-up behavior. If you
do not specify 'buffer' or 'invert' for outputs that are described using
detailed flip-flop stimulus, then the language compiler will produce
warning messages and the results of your circuit will depend on how
your design is actually implemented in hardware.

ISTYPE 'pos'

The equations for this output will be optimized by the compiler for

positive polarity. Note that this attribute does not indicate an active-

high signal. The 'pos' and 'neg' attributes are used to control the form
of the equations produced by the language compiler and are typically

used when you you want to control the behavior of the circuit during
don't-care conditions. If the 'pos' or 'neg' attributes are not specified,

the language compiler will assume 'pos'. See also the 'neg' and 'dc'

attributes.
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ISTYPE 'neg'

The equations for this output will be optimized using negative polarity.

This attribute does not indicate an active-low signal. When 'neg' is

specified for an output, all don't-care conditions (whether implied or

specified) will result in the output going high. See also the 'pos' and 'dc'

attributes.

ISTYPE 'dc'

The equations for this output will be optimized using don't-cares.

Don't-cares are implied whenever incompletely specified truth tables or

state diagrams are written, or may be specified directly in don't-care

equations (using the ?= or ?:= equation assignment operators.) See also

the 'pos' and 'neg' attributes.

ISTYPE 'xor'

This attribute instructs the compiler to preserve one top-level exclusive-

OR operator (if there is one available) for the indicated output. If there

is no top-level XOR operator in the logic description, then this attribute

will have no effect. (The language compiler will not attempt to generate

XORs from a non-XOR logic description.)

Output Inversion Considerations

Many of the attributes described define implementation dependencies
or assumptions in the design. The 'invert' and 'buffer' attributes, for

example, are used to specify the state of the programmable output
inverters that are commonly found in PLDs. Note also that there is no
attribute indicating that a signal is bidirectional. Bidirectional signals

are determined by how they are used in subsequent logic descriptions,

not by how they are declared.

Active-low Declarations

Active-low declarations may be used for signals that are more naturally

expressed using active-low (low-true) logic. To declare a signal as active

low, a ! operator is placed in front of the signal name in the PIN or NODE
declaration, as shown in the following example:

! Ready, JInit, ClockOut PIN ISTYPE 'com';
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This PIN declaration statement declares the combinational output
signals Ready and Init as active low. Wherever these signals are specified

in the design descriptions, they will automatically be inverted by the

language compiler.

Since the language compiler performs the inversion during processing,

there is no difference between a design that is specified using active-low
declarations from one that is specified using standard declarations and
inverted equations. If you need to preserve information about the

active-level of a signal beyond the compilation stage, then you must use
signal naming conventions to do so. (One common method is to declare

active-low signals with their names prefixed by an underscore charac-

ter.)

Active-low declarations affect all direct uses of the signal in the sub-
sequent design descriptions. This includes use as an equation output,

as an input or feedback, and as a state diagram state register bit. Test

vectors are also affected when a signal is declared as active low. An
active-low signal specified in a test vector header will result in inverted

values in the subsequent test vectors entries. Active-low declarations

also affect any use of the signal with pin-to-pin feedback dot extensions.

Pin-to-pin feedback dot extensions are used to specify unambiguous
pin or register feedback using logic values as they appear on the

specified pin (taking into account any fixed pin inversion). The pin-to-

pin feedback dot extensions are .PIN and .FB. Signal references that

include flip-flop stimulus (detailed) dot extensions are not affected by
active-level inversion. These dot extensions include .D, .T, .J, .K, .S, and
.R, all reset and preset oriented dot extensions, and the .CLK, .CE, and
.OE dot extensions.

Numeric Constants

Numeric constants are used in ABEL to specify integer values. All

operations involving numbers in an ABEL description are processed
with 128-bit unsigned integer arithmetic. The 128-bit accuracy means
that numbers can have a value in the range of to 2

128
- 1. Numbers

are specified in base 10 (decimal) radix unless an alternative ©RADIX
directive is in effect or the number is preceded by a radix modifier. The
radix prefixes are Ab, Ao, Ad, and Ad.

The Ab radix prefix indicates that the number is in binary (base 2).

Numbers specified using the Ab radix modifier must consist only of 1

and characters.
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The Ao radix prefix indicates that the number is in octal [base 8).

Numbers specified using the Ao radix modifier must consist only of the
characters through 7.

The Ad radix prefix indicates that the number is in decimal (base 10).

This is the default radix, unless an alternative radix has been specified

using the ©RADIX directive.

The Ah radix prefix indicates that the number is in hexadecimal (base

16). Numbers specified using the Ah radix modifier may consist of the

characters through 9, 'a', b\ 'c\ 'd\ 'e\ and T . (The alphabetic portions

of a hexadecimal number may be entered in either upper- or lowercase.)

Note that, due to parsing conflicts, hexadecimal numbers that begin
with an alphabet character must be prefixed with Ah evenwhen ©RADIX
16 is in effect.

Strings as Numbers

In equations, truth tables, and other logic expressions, a string of

characters enclosed in single quotes can be used to represent numbers.
In this case, the ASCII code ofthe characters is used to create a numeric
value. When more than one character is concatenated to form a string,

each character represents eight bits ofnumeric data, with the rightmost

character in the string representing the least significant eight bits of the

number. The following sample declarations demonstrate how strings

can be used to represent numbers:

Strl = 'a'; "Evaluates to 97 decimal (61 hex)

Str2 = 'fred'; "Evaluates to 1718773092 (66726564 hex)

Since numbers are a maximum of 128 bits in size, the maximum
number of characters that can be concatenated to form a number is 16.

A.3 EXPRESSIONS

An ABEL expression consists of one or more expression elements that

may be operated on by one or more expression operators. An expression

element can consist of a signal, set, number, or special constant.

Expressions can themselves be elements of larger expressions, with no
limit to the level of nesting. Expressions constructed from these basic

types are used throughout ABEL to represent combinational logic

functions or arithmetic operations resulting in numeric values. Expres-

sions of arbitrary complexity can be used anywhere in the design
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description where signal identifiers, sets, numbers, or special constants

are required.

Signals

Signals in ABEL can be either pins or nodes and are declared in a
DECLARATIONS section before their use in logic descriptions and test

vectors. Wherever used, signals can be grouped into sets or operated

on directly by expression operators. When signals are operated on, the

rules and order of evaluation are the same as for operations performed
on single-bit numeric values. The result of an expression that includes

signals is always a combinational network. The following ABEL equa-
tions demonstrate some common operations using signals:

Yl = IBusy;

Y2 = A & B & (C # D);

Y3 = (A ! = D) ;

Signal Dot Extensions

Dot extensions are added to signals to specify secondary signals asso-

ciated with an output. Secondary signals include such things as clocks,

resets and presets, output enables, and flip-flop data inputs. Dot
extensions can also be used to remove ambiguities when specifying

feedback from registered outputs. The following dot extensions are

supported in ABEL.

.ACLR

Asynchronous clear (pin-to-pin). This dot extension is used to specify

asynchronous clear (reset) logic for the associated output. This dot

extension applies to the output pin associated with a flip-flop and, when
active, causes the output pin to be set to a state of 0. If the output is

inverted, a value of 1 will be loaded into the associated flip-flop to clear

the output to 0.

.AP

Asynchronous preset. This dot extension is used to specify asynchro-
nous preset logic for the associated output. This dot extension applies

directly to the flip-flop associated with the output and, when active,

causes the flip-flip to be set to a state of 1 . If the output is inverted, then
a will appear on the actual output pin.
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.AR

Asynchronous reset. This dot extension is used to specify asynchronous
reset logic for the associated output. This dot extension applies directly

to the flip-flop associated with the output and, when active, causes the

flip-flip to be set to a state of 0. If the output is inverted, a 1 will appear
on the actual output pin.

.ASET

Asynchronous set (pin-to-pin). This dot extension is used to specify

asynchronous set (register preset) logic for the associated output. This

dot extension applies to the output pin associated with a flip-flop and,

when active, causes the output pin to be set to a state of 1. If the output
is inverted, a value of will be loaded into the associated flip-flop to set

the output to 1

.

.CE

Clock enable. This dot extension specifies a clock enable function for a
gated clock D-type flip-flop. An equation written for a .CE dot extension

implies an AND operation between the .CE and .CLK flip-flop inputs.

.CLK

Clock. This dot extension specifies the source of clocking signals for a
flip-flop associated with the specified output signal. The presence of a

.CLK dot extension indicates that a flip-flop is associated with the

specified output.

.CLR

Synchronous clear (pin-to-pin). This dot extension is used to specify

synchronous clear (reset) logic for the associated output. This dot

extension applies to the output pin associated with a flip-flop and, when
active during a clock edge, causes the output pin to be set to a state of

0. If the output is inverted, a value of 1 will be loaded into the associated

flip-flop to clear the output to 0.

.D

D input to a D flip-flop or latch. This dot extension indicates the data

to be loaded into the flip-flop during the next rising clock event, or into
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a level-sensitive latch during its transparent mode. Since this dot

extensions specifies the data to be loaded into the flip-flip or latch, any
inversion of the output pin (as specified with an 'invert' attribute or as

a side effect of the hardware implementation) will result in a reversal of

the data appearing on the actual output pin.

.FB

Pin-to-pin register feedback. This dot extension is used on the right side

of equations (the R-value) to specify that the signal fed back is to come
directly from the associated flip-flip. When .FB is specified, the logic fed

back is normalized to the values that are observed on the actual output

pin. This means that if the output of the flip-flop is inverted before being

routed to the output pin, the .FB feedback will be adjusted automatically

to match the pin's value. .FB is typically used in conjunction with the
:= assignment operator to describe registered functions in terms of

pin-to-pin behavior.

.FC

Flip-flop mode control. This dot extension is highly device specific and
is used to dynamically control a flip-flop's mode. Some programmable
logic devices feature flip-flops that can be dynamically changed from D
to JK type, and this dot extension provides direct control over this

feature. This dot extension is not recommended for general-purpose
logic design.

J

J data input to a JK flip-flop. This dot extension is one of the two data
inputs required for a JK flip-flop. In ABEL, all JK-type flip-flops are

assumed to be clocked, so the .J and .K dot extensions must be used
in conjunction with a .CLK dot extension to describe the flip-flop

behavior. Since this dot extension specifies an operation to be performed
directly on the flip-flip, any inversion of the flip-flop's output (as

specified with an 'invert' attribute or as a side effect of the hardware
implementation) will result in a reversal of the data appearing on the
actual output pin.

.K

K data input to a JK flip-flop. (See .J).
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.LD

Register load. This dot extension, when active, causes data applied to

the flip-flop's associated output pin to be read into the flip-flop. This dot

extension is device specific and should not be used unless the design
is being implemented in a device that supports this feature.

.LE

Latch enable (low). This dot extension is used in place of the .CLK dot

extension to indicate that the register is a level-sensitive latch. The .LE

dot extension is low-true; the value applied to the latch input is read
into the latch when the .LE signal is low.

.LH

Latch enable (high). This dot extension is used in place of the .CLK dot

extension to indicate that the register is a level-sensitive latch. The .LH

dot extension is high-true; the value applied to the latch input is read

into the latch when the .LH signal is high.

OE

Output enable. This dot extension is used to specify an output enable

function for the specified signal. Output enables can be specified for

combinational or registered outputs.

.PIN

Pin feedback. This dot extension is used to specify a feedback that must
originate at the specified pin. If the specified signal also has an .OE
(output enable) equation specified elsewhere in the design description,

any feedback specified with .PIN will depend on whether or not the

output is enabled. .PIN is used when describing designs that require

bidirectional I/O capabilities to ensure that the feedback originates

from the proper place in the circuit. If no .PIN is specified for fed-back

signals on the right side of the equation (in the R-value) the origin of

the feedback is ambiguous and will depend on how the design is actually

implemented in hardware.
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.PR

Preset (generic). This dot extension is used to specify preset logic for the

associated output. This dot extension applies directly to the flip-flop

associated with the output and, when active, causes the flip-flip to be
set to a state of 1 . (If the output is inverted, a will appear on the actual

output pin.) This dot extension is generic, meaning that it does not

specify whether the preset is to be synchronous or asynchronous. The
ABEL simulator will treat presets specified with .PR as asynchronous,

but device fitters and other synthesis software may implement the

preset as synchronous depending on the resources available in the

target architecture. For this reason, the .AP or .SP dot extensions are

recommended instead.

.Q

Direct register feedback. This dot extension is used on the right side of

equations (the R-value) to specify that the signal fed back is to come
directly from the Q output of the associated flip-flip or latch. When .Q
is specified, the logic fed back is normalized to the values that are

observed on the actual output of the register. This means that if the

output of the flip-flop or latch is inverted before being routed to the

output pin the fed-back signal will be inverted from the value observed
on the associated output (if any). .Q is typically used in conjunction

with the .D, .T, and other data input dot extensions to describe

registered functions in terms of the flip-flop contents, rather than in

terms of pin-to-pin behavior.

.R

R input to an SR flip-flop. (See .S.)

.RE

Reset (generic). This dot extension is used to specify reset logic for the

associated output. This dot extension applies directly to the flip-flop

associated with the output and, when active, causes the flip-flip to be
set to a state of 0. (If the output is inverted, a 1 will appear on the actual

output pin.) This dot extension is generic, meaning that it does not
specify whether the preset is to be synchronous or asynchronous. The
ABEL simulator will treat resets specified with .RE as asynchronous,
but device fitters and other synthesis software may implement the reset

as synchronous depending on the resources available in the target
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architecture. For this reason, the .AR or .SR dot extensions are recom-
mended instead.

.s

S data input to an SR flip-flop. This dot extension is one of the two data
inputs required for a SR flip-flop. In ABEL, all SR flip-flops are assumed
to be clocked, so the .S and .R dot extensions must be used in

conjunction with a .CLK dot extension to describe the flip-flop behavior.

Since this dot extension specifies an operation to be performed directly

on the flip-flip, any inversion of the flip-flop's output (as specified with
an 'invert' attribute or as a side effect of the hardware implementation)

will result in a reversal of the data appearing on the actual output pin.

.SET

Synchronous set (pin-to-pin). This dot extension is used to specify

synchronous set (register preset) logic for the associated output. This

dot extension applies to the output pin associated with a flip-flop and,

when active during a clocking operation, causes the output pin to be
set to a state of 1. If the output is inverted, a value of will be loaded

into the associated flip-flop to set the output to 1

.

.SP

Synchronous preset. This dot extension is used to specify synchronous
preset logic for the associated output. This dot extension applies directly

to the flip-flop associated with the output and, when active during a
clocking operation, causes the flip-flip to be set to a state of 1 . (If the

output is inverted, a will appear on the actual output pin.)

.SR

Synchronous reset. This dot extension is used to specify synchronous
reset logic for the associated output. This dot extension applies directly

to the flip-flop associated with the output and, when active during a

clocking operation, causes the flip-flip to be set to a state of 0. (If the

output is inverted, a 1 will appear on the actual output pin.)

T

T input to a T (toggle) flip-flop. This dot extension indicates the event

(either toggle or hold) to occur in the flip-flop during the next rising clock
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event. Since this dot extension specifies toggle and hold operations

within the flip-flop, there is no direct pin-to-pin relationship between .T

dot extension equations and the values appearing on the output pins.

If there is an inversion between the output of the flip-flop and the actual

output pin (as specified with an 'invert' attribute or as a side effect of

the hardware implementation), the value appearing on the output pin

will be reversed from the value in the flip-flop after the toggle or hold

operation.

Sets

Sets are collections of expression elements enclosed in square brackets

and separated by commas. Sets may contain other sets to an arbitrary

level of nesting. Any expression element can appear as a member in a
set, and different types of expression elements can be mixed to form a
composite set. When a sequence of related signals (named with a
common alphabetic prefix and sequential numeric suffixes) is entered

in a set as members, the range operator (..) can be used as a shorthand
notation. The following examples demonstrate a variety of set expres-

sions of increasing complexity:

[q3 ,q2,ql,q0] "Simple 4-bit bus
[q3..q0] "Shorthand notation for a bus
[0,0,ql,qO] "Composite: padded with zeros
[ .x. , .x. ,ql,qO] "Padding with no-connects
[q3..q0] > 5 "Magnitude comparison
[ [q3. .qO] , Select ]==[ A hF, A] "Nested sets

Set Indexing

Any set can be indexed to obtain a subset. Set indexing can be used to

select one or more elements from a set for use within an expression.

When index values are specified, they specify set elements that are
numbered from right to left, beginning with the number 0. The following

examples demonstrate how to use set indexing:

declarations

Qset = [q7..q0]; "8-bit bus
Qhigh = Qset [7.. 4]; "High nibble, same as [q7..q4]
Qlow Qset [3.. 0]; "Low nibble, same as [q3..q0]

Set indexing always produces another (usually smaller) set, even if only
one set index value is specified. Ifyou need to obtain a single-bit (nonset)
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value from a range operation, you can use the following relational

expression:

MSB = (Qset[7] == 1); "1-bit result (same as q7

)

Numbers

Numbers may be used as expression elements and are often used in

combination with signals and sets to form large composite expressions.

When a number is operated on in a larger expression containing sets

or signals, the number is truncated or padded with zeros to match the

width of the set or signal that it is being operated directly upon. Since

individual signals have an inherent width of one bit, any operation

between a number and a signal will result in the number being

truncated to a single bit. This means that the following two expressions

are exactly equivalent:

(Sell & Sel2 & Sel3) == 5 "Truncated to 1 bit
(Sell & Sel2 & Sel4) == 7 "Truncated to 1 bit

Since numbers are converted to sets when a set is involved in the

expression, the following two expressions are not equivalent:

[Sell,Sel2,Sel3] == 5 "3 bits: 1,0,1
[Sell,Sel2,Sel3] == 7 "3 bits: 1,1,1

Special Constants

Special constants may be used in an expression, but if the expression

appears anywhere other than in a test vector entry, the only special

constant allowed is the no-connect constant (.X.). In logic descriptions,

the no-connect constant is used to pad the most significant (leftmost)

bits of a set so that operations can be performed on sets of otherwise

unequal size. The no-connect special constant can also be used to pad
the least significant (rightmost) side of a set to change the evaluation of

numeric constants. Both of these uses of the no-connect special con-

stant are shown in the following sample expressions:

( [.x.,A2,Al,A0] + t.x.,B2,Bl,B0])==[C3,C2,Cl,C0]
"compare 4-bit result of 3-bit add

[A15. .A8, .x., .x., .x., .x., .x., .x., .x., .x.]== AhE0200
"compare high byte of a word
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Operator Description

! NOT (Boolean inversion)

& AND
# OR
$ XOR
!$ XNOR

Figure A.3 ABEL Boolean operators

Expression Operators

ABEL includes a rich variety of operators that can be applied in

expressions. The operators are broken into three categories: Boolean,

relational, and arithmetic. (The Boolean operators are referred to as

logical operators in the standard ABEL documentation.) A fourth type

of operator, the assignment, is discussed in Section A.4.

Expressions can be used in a wide variety of contexts within an ABEL
source file. When an expression is used within a logic description, the

desired result is generally a combinational network (an equation tree)

that forms all or part of the combinational logic for one or more outputs.

This tree representation may or may not include signals, depending on
the contents of the expression. In a strictly numeric context, such as in

a truth table entry, test vector, or directive, the expression is evaluated

immediately to produce a numeric value. In this latter context, the

expression cannot include signals, since a signal cannot be resolved

into an actual value at compile time.

With the exception of the multiplication-related arithmetic operators

(which cannot be applied to sets), all ABEL operators are available for

use in any logic description or numeric context and can operate on any
type or mix of expression elements (signals, numbers, sets or no-con-
nects).

Boolean Operators

ABEL's Boolean operators provide all the basic operations needed for

describing combinational logic functions. The ABEL Boolean operators
and corresponding symbols are shown in Figure A.3.
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Operator Description

== equality comparison

!= inequality comparison

< less than

> greater than

<= less than or equal to

>= greater than or equal to

Figure A.4 ABEL relational operators

Relational Operators

ABEL's relational operators allow complex logical comparison functions

to be easily described. The expression elements being compared can be
signals, sets, numbers, or no-connect (.X.) special constants. The result

of any comparison, regardless of the width or type of the expression

elements, is always a single bit. For comparisons that include signals,

the result of a comparison operation is always a single output combi-
national network. Comparison operations that operate on numbers (or

sets of numbers) always result in a numeric value of either (false) or

2
32

- 1 (the 32-bit unsigned equivalent of -1). The table of Figure A.4
lists the relational operators available in ABEL.

Arithmetic Operators

Arithmetic operators perform arithmetic operations on expression ele-

ments. Figure A. 5 lists the arithmetic operators supported in ABEL.

In numeric expressions, arithmetic operations always result in a posi-

tive integer value in the range of to 2 - 1 . In the context of a logic

description, expressions containing arithmetic operations are converted

to a combinational network (an equivalent expression composed of

Boolean operators) according to the rules for set evaluation described

later in this section. The multiplication-related operators (*, /, %, «,
and ») are restricted to expressions containing signal, number, or

special constant element types. Sets are not supported in multiplica-

tion-related operations.

Because numbers in ABEL are unsigned integers, the results of arith-

metic operations are always positive integers. Negation is a twos com-
plement operation resulting in a positive (and typically large) integer

value. Subtraction consists of the addition of the second operand's twos
complement to the first operand and results in the values you would



A.3 EXPRESSIONS 247

Operator Description

+

(unary) negation (twos complement)

(binary) subtraction

addition
*

/

multiplication

division

%
«

modulo (remainder of division)

shift left

» shift right

Figure A.5 ABEL arithmetic operators

expect when the first operand is greater than the second. Because
numbers are integers, the result of a division operation is always an
integer. The remainder of a division operator can be obtained by using

the modulo (%) operator.

The shift right and shift left (« and ») operators result in the equivalent

of a multiplication or division operation, respectively, by the power of

two specified in the second operand. This arithmetic shift results in

zeros being shifted in from the left (during right-shift operations) or from

the right (during left-shift operations).

Operator Priorities

When writing ABEL design descriptions, it's important to keep in mind
the priorities and order of operation for expressions that include more
than one operator. Figure A.6 shows all the ABEL operators with a
number indicating the level of each operator's priority.

Parentheses can be added to expressions to change the ordering

(binding) of operators and should be used liberally in ABEL designs.

Parenthesis can improve the readability of designs as well as help to

avoid order of evaluation errors in complex expressions.

When more than one operator of equal priority appears in an expression

that has not been placed in parentheses, the operations are evaluated

from left to right. Since there are only four levels of priority in ABEL
expressions, priority-related mistakes when writing logic descriptions

are common. The most common errors are related to the combination
of relational or arithmetic operators with Boolean operators, and these

errors can be difficult to track down if the design compiles successfully

but operates incorrectly. To avoid these common problems, it is recom-
mended that all relational and arithmetic subexpressions be sur-
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Priority Operator Description

1
- Unary minus (negation)

1 i NOT (invert)

2 & Logical AND

2 » Arithmetic shift right

2 « Arithmetic shift left

2
*

Multiplication

2 / Division

2 % Modulo (remainder)

3 + Addition

3 - Subtraction

3 # Logical OR

3 $ Exclusive-OR

3 !$ Exclusive-NOR

4 == Eguality

4 != Ineguality

4 > Greater than

4 < Less than

4 >= Greater than oregual

4 <= Less than or egual

Figure A.6 ABEL operators and their priorities

rounded by parentheses, regardless of whether the parentheses are

actually needed.

Set Evaluation

All expression operators (with the exception ofthe multiplication-related

operators *, /, %, «, and ») can be applied to sets as well as to other

element types. When a set is operated on, the order and manner in

which the set elements are processed depends on the type of operation

being performed. Figure A. 7 defines the set evaluation rules for Boolean,

relational, and arithmetic operators and shows how the relational and
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Expression Result

![ak..ail [ak, lak-1, ... , !ail

[ak..ail&[bk..bi] [ak& bk, ak-i & bk-i, ... , ai & bil

rak..ai1 # rbk..bil ak # bk, ak-i # bk-1 ai # bi]

[ak..ail$[bk..bil [ak$bk, ak-i $ bk-1 ai $ bil

[ak..ail !$ [bk..bil [ak !$bk , ak-i !$ bk-i, ... , ai !$ bil

[ak..ai] = [bk..bi] (ak == bk) & (ak-i ==bk-i)

&...&(ai=bi)

[ak..ai] !=[bk..bi] (ak != bk ) # (ak-i !=bk-i)

# .. # (ai != bi)

[ak..ai] < [bk..bi] Ck

with:

Cn = (!an &(bn# cn-l)

#(an &bn &Cn-l)) !=0

ci =0

fak..ail > [bk..bil ([bk..bi]<fak..ai])

[ak..ail<=fbk..bil !(rak..ail > fbk..bil)

[ak..ail>=[bk..bi] !(fak ..ail < [bk..biD

-fak..ail ![ak..ai] +

1

[ak..ai] + [bk..bi] S
with:

Sn = an $ bn $ Cn-1

Cn = (an $ bn ) # (an & Cn-1) # (bn & Cn-1)

C1 =0

[ak..ai] - [bk..bi] [ak..ai] + -[bk..bi]

Figure A.7 ABEL set expression evaluation rules

arithmetic operators are converted to Boolean operations. In the table,

k refers to the number of bits in the sets, while n is an index into the

sets (ranging from 1 , the least significant or rightmost bit, to k, the most
significant or leftmost bit.) A and B are sets composed of elements ai

through ak and bi through bk, respectively.

In many operations involving sets, the result ofevaluating an expression
will depend on the types ofelements that are included in the expression.
The result of an expression involving sets will always be another set,

even if the expression involves relational operators. A relational opera-
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tion performed on sets will result in a set of all zeroes or all ones, and
the width of the result will depend on the context in which the relational

operation was performed.

A.4 EQUATIONS

In a design description, equations can appear in an EQUATIONS section

or within the state definitions of a STATE_DIAGRAM section. There can
be any number of EQUATIONS sections in a single design description.

All ABEL equations consist of three basic parts: a left-hand (output)

side, called the L-value, an assignment operator, and a right-hand

(input) side, which is called the R-value. Equations are terminated by
a semicolon. An example of an equation is

Outl = (Select & [cl,c0]

# iSelect & [bl,bO]) != [1,1];

This equation tests the result of a multiplexer operation and assigns

the result to Outl . The L-value of this equation is a simple expression

consisting of the signal Outl , while the R-value of the equation is a more
complex expression consisting of signals, sets, numbers, and a variety

of Boolean and relational operators. The combinational assignment
operator = indicates that this equation describes a combinational
function whose output is Outl

.

The R-value of an equation can be any combination of signals, sets,

numbers, and the no-connect special constant (.X.), and any syntacti-

cally correct combination of Boolean, relational and arithmetic opera-

tors. As in other places where such expressions are allowed,

parentheses can be used to specify the ordering of complex operations

or simply to improve the readability of the expression. (The preceding

example uses parentheses to enclose the OR operation, but these

parentheses are not actually needed since the OR operator has a higher

priority than the != relational operator.)

The structure of the L-value of an equation is more limited. L-value

expressions may include signals or no-connect special constants, but
may not include numbers. Sets consisting of signals or no-connects are

also valid in the L-value. The only operator that is allowed in an L-value

is the ! Boolean operator. The ! operator can be used to invert the

L-value, which is functionally equivalent to inverting the R-value. This

is demonstrated by the following two equations, which are functionally

identical:
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IO_SELECT = ! (Address == AhC800);
IIO_SELECT = (Address == AhC800);

When an equation is specified (or represented internally by the language
compiler) with an inverted L-value, the equation is said to have negative

polarity. Equations that do not have inverted L-values are positive

polarity. Which form to use when describing a design is purely a matter

of style and convenience. (An alternative way of describing an active-low
function such as the one shown is to use an active-low declaration.

Active-low declarations were described in Section A.2.)

Since the signal Outputl appears in the L-value of an equation, it is

identified by the language compiler as an output of the design. The
signals Select, CI, CO, Bl, and BO, since they appear in the R-value,

are determined to be inputs. If a signal appears in both the L-value and
the R-value, the compiler will determine that the signal is either

bidirectional, or a fed-back output. (The language compiler makes no
distinction between bidirectional signals and feedback loops. That
determination is a device fitting task that must be performed by
device-specific synthesis software.)

In ABEL equations involving sets on both sides of the equation, the

L-value and R-value must have the same width or an error will occur
during compilation. In the preceding example, both sides ofthe equation

evaluate with a width of one, because relational operators always
produce a one-bit value.

When an equation has a set on the left side of the equation, but a signal

(or other single-bit result) on the right side, each element of the L-value

set is assigned the R-value. For example, the equation

[Outputl, Output2] = A & B;

is equivalent to the two equations

Outputl = A & B;

Output2 = A & B;

When an equation assigns a numeric value (or numeric expression) to

a set, the numeric value is converted to a set of the appropriate size

(either by padding from the left with zeros or truncating the most
significant bits) before the assignment is made. For example, the

equation

[Outputl, Output 2] = 1;
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is equivalent to the two equations

Output l = 0;

Output2 = 1;

and the equation

[Output 1, Output 2] = 14;

is equivalent to the two equations

Output 1 =1;
Output2 =0;

In this example, the binary representation of 14 (

Ab 1110) was truncated
to two bits (

Abl0) before the assignment was made.

WHEN-THEN-ELSE Equations

In addition to the equation format described previously, ABEL also

provides an alternative form for expressing conditional logic. The
WHEN-THEN keywords can be used to write equations like the follow-

ing:

WHEN Select == [0,0] THEN
DataOut = DataA;

WHEN Select == [0,1] THEN
DataOut = DataB;

WHEN Select == [1,0] THEN
DataOut = DataC;

WHEN Select == [1,1] THEN
DataOut = [0,0,0,0];

When processed, the expressions between the WHEN and THEN key-

words (the conditional expression) are ANDed with the equations fol-

lowing the THEN keywords to form complete equations, one for each
WHEN-THEN statement. If you wish to guarantee that a series of

WHEN-THEN conditions is mutually exclusive, you can use an ELSE
clause to chain together two or more WHEN-THEN statements or to

provide a terminating (default) conditional. The following series of

statements uses chained WHEN-THEN and ELSE statements to specify

a mutually exclusive function:
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WHEN Mode == Inactive THEN
Stat == F_OFF;

ELSE WHEN Data > AhOOFF THEN
Stat == F_INC;

ELSE
Stat == F_HLD;

When processed by the language compiler, each ELSE clause results in

a progressively more complex equation being generated for the associ-

ated equation. In this example, the chain ofWHEN-THEN-ELSE state-

ments will result in an equation for Status that is functionally equivalent

to

Stat = (Mode==Inactive) & F_OFF
# ! (Mode==Inactive) & (Data > AhOOFF) & F_INC
# I (Mode==Inactive) & ! (Data > AhOOFF) & F_HLD;

WHEN-THEN statements that operate on more than one output can
take advantage of ABEL's equation block construct that allows groups
of equations to be combined in a single block of text. Equation blocks

are enclosed in curly braces ({ and }) and can be used in place of a single

equation anywhere in an ABEL source file. The following example uses
an equation block to enclose three equations in a single WHEN-THEN
statement:

WHEN (Mode == Load) THEN
{ RESULT := Dataln;

RESULT. OE = 0;

Status = Setup;

)

Multiple Equations for the Same Signal

When more than one equation is written for the same output, the

equations must be combined by the language compiler to form a single

equation. This is done by combining (through the use of an OR
operation) all equations with noninverted L-values into one group of

equations and combining all equations with inverted L-values into

another group of equations. The negative equation is then converted to

positive polarity and the two equations are combined into a signal

equation with an OR operation. For example, if the equations
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Output2 = Al;

Output2 = A2;

! Output 2 = A3;

! Output 2 = A4

;

are written for an output, then the result (after the equations have been
combined) will be

Output 2 = Al # A2 # • (A3 # A4 )

;

Pin-to-Pin Registered Equations

ABEL's pin-to-pin registered assignment operator can be used when a
design requires registered outputs. Registered outputs hold their values
until a clock signal causes a new value to be loaded. The following

equation describes a function that stores a shifted 2 -bit data value in

four output registers:

[03,02,01,00] := [D1,D0,0,0] & Shift
# [0,0,D1,D0] & IShift;

This equation describes the function as it will appear on output pins

Q0 through Q3. The := assignment operator describes pin-to-pin values,

so the actual value stored in the associated flip-flop and the flip-flop

type are left undefined. (Pin-to-pin registered descriptions such as this

imply D-type flip-flops or latches, but logic synthesis routines found in

some device fitters can convert the equations into alternativee flip-flop

types.) When clocked functions (flip-flops) are described, the equation

for the outputs must be accompanied by a clock equation such as the

following:

[Q3,Q2,Q1,Q0] .CLK = Clock;

This equation indicates that the flip-flops associated with the Q3
through QO outputs are to be clocked using the input signal Clock. In

the absence of a clock equation, the ABEL logic simulator will be unable

to load the desired function into the registers, so the design will not

work as intended. The absence of a clock equation will also cause

problems during the synthesis and device fitting process, since the

register type (flip-flop or latch) is ambiguous.
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Writing Flip-flop-oriented Equations

The .CLK dot extension used in the previous example is the most
common of the flip-flop-related dot extensions. An equation for a .CLK
is required for every output signal that has a flip-flop associated with

it. There are many other dot extensions associated that allow you to

have more complete control over the behavior of the flip-flop. These dot

extensions were described in Section A.3 and include extensions for

reset and preset and for the specific data inputs to various types of

flip-flops.

When the data inputs to flip-flips (the .D, .T, .J, .K, .S, and .R dot

extensions) are used in logic descriptions or when you are writing

equations describing flip-flop reset and preset functions, the focus of

your design description is moving to the various flip-flop inputs, rather

than to the design outputs. This is particularly important to understand
if your design will be implemented in a programmable logic device that

has inverted outputs. When the outputs are inverted, the values that

appear on the output pins will be inverted from the values that are

actually stored in the associated flip-flop.

Figures A.8 and A.9, for example, show two forms of the simple shifter

function previously described, using flip-flop stimulus (detailed) design

equations. The first of these examples shows how the design would be
written ifthe outputs were not inverted, while the second example shows
how the design would be written if the outputs were inverted. The
difference in these two representations is in the inversion of the L-value
when istype 'invert' is specified. Without this additional inversion, the

data appearing on the design outputs would be reversed from what had

MODULE Shi ft

1

Clock, Shift PIN; "Control inputs
D1,D0 PIN; "Data inputs
Q3,Q2,Q1,Q0 PIN ISTYPE ' reg_D,buffer ' ; "Outputs

EQUATIONS

[Q3,Q2,Q1,Q0] .D = [Dl,DO,0,0] & Shift
# [0,0,D1,D0] & iShift;

[Q3,Q2,Q1,Q0] .CLK = Clock;

END

Figure A.8 Simple shifter described using a flip-flop oriented (.D) equation
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MODULE Shift2

Clock, Shift PIN; "Control inputs
Dl,D0 PIN; "Data inputs
Q3,Q2,Q1,Q0 PIN ISTYPE ' reg_D, invert ' ; "Outputs

EQUATIONS

! [Q3,Q2,Q1,Q0] .D = [D1,D0,0,0] & Shift
# [0,0,D1,D0] & ! Shift

;

[Q3,Q2,Q1,Q0] .CLK = Clock;

END

Figure A.9 Shifter described with .D equation and 'invert' attribute

been applied on the two data inputs. Both examples have the same
operation as the pin-to-pin version described earlier. Since flip-flop

specific features such as preset and reset are not required for this simple

design, the earlier pin-to-pin version is preferable.

On, Off and DC Assignments

ABEL supports the specification of logic that includes don't-care input

conditions. To specify don't-cares for logic that has been described in

equation form, you can use alternative assignment operators to com-
pletely specify the don't-care conditions for an output. Figure A. 10 lists

ABEL's assignment operators.

Operator Description

Combinational assignment

Combinational don't-care assignment

:= Registered assignment

?:= Don't-care registered assignment

Figure A. 10 ABEL assignment operators

These assignment operators can be used in addition to the standard
assignment operators to completely specify a logic function that in-

cludes don't-cares.



A.5 STATE DIAGRAMS 257

A.5 STATE DIAGRAMS

ABEL'S STATE_DIAGRAM language allows the pin-to-pin description of

complex sequential circuits. Each STATE_DIAGRAM section consists of

one state diagram header followed by any number of state descriptions.

Each state description must include a state value and at least one
transition statement. A sample state diagram is shown in Figure A. 1 1

.

State Diagram Header

The state diagram header lists which signals (either pins or nodes) will

be used to store the current state of the machine being described. This
list of signals is called the state register, and each signal in the state

register represents one state bit. The list is entered as a set of registered

signals, as shown in the sample state diagram of figure A. 1 1 . Since each
state of the machine must have a unique value stored in the state

register, the maximum number of states that can be represented is 2™,

where n is the number of state bits in the state register. It is not

necessary to define all possible states of the machine, however. Many
(perhaps most) state machines have some number of states that are

undefined, since the number of states required for a large sequential

application is rarely an exact power of 2.

In addition to the common state diagram header seen in most state

diagram examples, ABEL allows a modified form of the header to be
used for state machines that will be implemented using combinational
signals. This form is often used for state machines that are being
implemented in PROM-type devices with external memory elements or

STATE_DIAGRAM [SI, SO]

STATE [0,1]: IF Restart THEN [0,1]
ELSE [1,1];

STATE [1,1]: IF Restart THEN [0,1]

ELSE [1,0];

STATE [1,0]: IF Restart THEN [0,1]
ELSE [0,0];

STATE [0,0]: IF Restart THEN [0,1]
ELSE [0,1];

Figure A. 1 1 Sample state diagram
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DECLARATIONS

C3,C2,C1,C0 PIN;
N3,N2,N1,N0 PIN ISTYPE 'com';

STATE_DIAGRAM [C3 , C2 , CI , CO ] - > [N3 , N2 , Nl , NO

]

Figure A. 12 Alternate form ofABEL state diagram header

when asynchronous state machines are being described. The state

diagram header shown in Figure A. 12 uses this alternative header
representation.

In the state diagram associated with this header, the first set of signals

(consisting of C3 through CO) represents the current state of the

machine, while the second set of signals {N3 through NO) represents the

calculated next state of the machine. The state descriptions that follow

this type of state diagram header are in all respects identical to the state

descriptions that follow standard state diagram headers.

State Values

State values are entered in state descriptions to describe the current

state of the machine (as represented in the state register) and to specify

the value of the next state for each transition statement. State values

indicate the actual values that will appear on the state bit outputs
(whether declared as PINs or NODEs) during each state of the machine.
Because of the possibility of output inversions, state values do not

necessarily correspond directly to the values stored in the state register

flip-flops. This is why state diagrams are said to be pin-to-pin design

descriptions.

State values can be entered as sets of binary values or as numbers.
State values can also be assigned identifier names and declared as

constants, as shown in Figure A. 13. Using constant declarations for

state values can help make the design easier to read and easier to modify
if you later need to optimize the state values.

Transition Statements

In our first simple example, each state description includes two possible

transitions that were chained using an IF-THEN-ELSE transition state-
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DECLARATIONS
Start = [0,1]
Delay 1 = [1,1],

Delay2 [1,0],

Delay 3 = [0,0],

STATE_DIAGRAM [SI, SO]

STATE Start: IF Restart THEN Start
ELSE Delayl;

STATE Delayl: IF Restart THEN Start
ELSE Delay2;

STATE Delay2: IF Restart THEN Start
ELSE Delay3;

STATE Delay3: IF Restart THEN Start
ELSE Start;

Figure A. 13 Using constants for state values

merit. Three basic types of transition statements can be used individu-

ally or combined to create complex transition logic. The first and
simplest type of transition is the GOTO statement. A GOTO statement
specifies an unconditional transition to the indicated state. Since the

last state of our sample state machine has only one possible next state,

this state description could be rewritten using a simpler GOTO state-

ment as follows:

STATE Delay3 : GOTO Start;

The second type of transition statement is the IF-THEN or IF-THEN-
ELSE statement. We have seen IF-THEN-ELSE statements used in our
simple example. When multiple IF-THEN-ELSE statements are chained,

all the transitions in the chain are guaranteed to be mutually exclusive.

This is done in much the same way as in the WHEN-THEN statements

described for equations. IF-THEN-ELSE statements also allow transi-

tions to be nested to an arbitrary level of complexity. Figures A. 14 and
A. 15 show how the same transition logic can be described using either

chained or nested IF-THEN-ELSE statements.

State5: IF Restart THEN StateO "Restart
ELSE IF Down & Skip THEN State3 " ! Restart&Down&Skip
ELSE IF Down THEN State4 "! Rest art&Down& ! Skip
ELSE IF Skip THEN State7 "! Restarts ! Down&Skip
ELSE State6; "! Restarts ! Downs ! Skip

Figure A. 14 Chained IF-THEN-ELSE statement
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State5: IF Restart THEN StateO
ELSE
{ IF Down THEN

{ IF Skip THEN State3
ELSE Stated

}

ELSE

<

IF Skip THEN State7
ELSE St ate 6;

}

}

Figure A. 15 Nested IF-THEN-ELSE statements

The third type of transition statement is the CASE-ENDCASE state-

ment. CASE-ENDCASE statements can be used to describe transition

logic that you know is mutually exclusive. The following shows how the

transition for the Start state can be written using a CASE-ENDCASE
statement to describe the same transition logic that was previously

written using an IF-THEN-ELSE statement:

STATE Start: CASE Restart: Start;
! Restart: Delayl;

ENDCASE;

The CASE-ENDCASE statement is rarely used, since any CASE-END-
CASE statement can be written more clearly as a series of IF-THEN
statements. In addition, the use ofCASE-ENDCASE often results in the

accidental creation of nonmutually exclusive transition logic.

State Output Equations

Most state machines are designed to drive outputs ofsome sort, soABEL
allows equations for these outputs to be entered within the state

descriptions. There are two basic ways to write equations within state

descriptions. You can write them for the current state, or for the current

transition.

To associate one or more equations with the current state of a machine,

you insert the equations into the state description between the state

value and first transition statement, as follows:
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STATE_DIAGRAM [SI, SO]

STATE [1,0]:
MyOutputl = 1;

MyOutput2 = A & B;

IF . . . THEN ... ;

In this example, the output MyOutputl will be true whenever the state

registers [SI and SO) contain the values 1 and (respectively) and the

output MyOutput2 will be true whenever the state registers contain the

indicated values and the inputs A and B are also true.

To write equations for outputs associated with specific transitions or to

write equations for registered outputs that must become active in a

destination state, you can use the WITH statement. The following state

description uses a WITH statement to include an output equation with

each of the two possible transitions out of the indicated state:

STATE Compare:
IF (Data == AhAA06) THEN

Write WITH {

status := STATUS_WRITE;

}

ELSE
Incr WITH {

Status := STATUS_HOLD;

)

Timing Considerations for State Outputs

When writing equations using WITH statements, it's important to

understand the timing of the resulting logic. Since the only information

available to decode as inputs to any state equation is the current state

and state machine inputs, there is no way to directly associate an
equation with the actual next state of the machine. Instead, the

equations that are written within WITH statements are always created

by using the specified transition logic and the current state. As a result,

combinational outputs described in a WITH section will be active one
state early and will probably not be the values that you expect when the

machine advances to the destination state. This is why equations
written within WITH statements are usually registered.

Equations written within state descriptions that are not enclosed in

WITH statements exhibit the opposite behavior. If a state output is

declared and used as registered, and is defined by an equation in a state

description, then that output will not become active until the next clock
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DECLARATIONS

Statel, State2,
State3,State4 = 1,2,3,0; "State values

ToStatel MACRO
(Statel WITH IN_1 := 1; IN_3 := 0; ENDWITH}

;

ToState2 MACRO
{State2 WITH IN_1 := 0; IN_3 := 0; ENDWITH};

ToState3 MACRO
{State3 WITH IN_1 := 0; IN_3 := 1; ENDWITH};

ToState4 MACRO
{Stated WITH IN_1 := 0; IN_3 := 0; ENDWITH};

STATE_DIAGRAM [SI, SO]

STATE State3:
IF (Reset) THEN ToStatel
ELSE IF (Hold) Then ToState3
ELSE ToSt at e4;

Figure A. 16 Using macros for WITH statements

cycle, by which time the state machine will probably have advanced to

a different state.

If you require a registered output to be active every time you transition

into a particular state, without regard to the previous state, you can use
a macro to attach one or more WITH equations to the primary state as

shown in Figure A. 16.

A.6 TRUTH TABLES

Truth tables are used to describe direct tabular relationships between
the values observed on a set of input signals and the corresponding

values that are to appear on a set of output pins. Truth tables consist

of a truth table header followed by one or more truth table entries.

Truth Table Headers

Like state diagrams, truth tables have a header that defines the input

and output signals to be used in the subsequent description. A sample
truth table header is
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TRUTH_TABLE ( [A,B,C,D] -> [Outl,Out2]

)

This truth table header lists the signals A, B, C and D as inputs and
signals Outl and Out2 as outputs. The use of the -> operator indicates

that the outputs are combinational and is analogous to the = assign-

ment operator. If the outputs of the truth table are registered, the :>

operator is used. The :> operator is analogous to the := pin-to-pin

registered assignment operator. The following example is a truth table

header for a set of two registered outputs:

TRUTH_TABLE ( [A,B,C,D] : > [Regl,Reg2]

)

Truth tables can include both combinational and registered outputs in

the same header by using a three-part header such as the following:

TRUTH_TABLE ( [A # B,C,D] : > [Regl,Reg2] -> [0utl,0ut2]

)

This combined representation is often used as an alternative to state

diagrams when describing state machines.

Nested sets can be used in truth table headers to simplify the entry of

truth table values. Truth tables can be further simplified by declaring

these sets using constant declarations as follows:

DECLARATIONS

InSet = [A,B,C,D];
OutSet = [0ut,0ut2];

TRUTH_TABLE (InSet -> OutSet)

Truth Table Entries

The actual entries in the truth table must consist of sets of numeric
values or .X. no-connect special constants. The set widths used in the
entries must match the set widths specified in the truth table headers.
The following truth table contains four entries that define the function
of the circuit (a simple XOR operation):
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TRUTHJTABLE ( [ A, B ]->[ Y])

[ 1. ]->[ 1];

[ o, 1 ]->[ 1];

[ o, ]->[ 0];

[ 1. 1 ]->[ 0];

As in equations, numbers can be substituted for sets of binary values,

so it is not necessary to type in large sets of binary values. The truth

table shown in Figure A. 17, for example, uses nested sets to describe a
complex decoder function

In this example, the Address and StringData sets are used to simplify

the truth table. Nonbinary numeric values are substituted for sets of

binary values in the truth table entries for Address and StringData, and
these numeric values are expanded by the compiler to match the width
of the header entries. When sets are nested in this way, it is important

to keep in mind that the nesting level of the truth table entries must
match the nesting of the truth table headers. If you ignore the nesting

levels, the results can be incorrect and confusing. For example, the truth

table shown in Figure A. 18 will not compile correctly because the

nestings of the truth table's header and entries do not match.

The input of this truth table is correctly described; the Bits and A sets

are combined to form the input set, and the input values written in the

truth tables are expressed as nonbinary values that are properly

evaluated and mapped to the inputs. The output side, however, is not

correctly written. Since set Vis declared as a set and then nested within

the output set of the truth table header, the effective set width of the

truth table header is 1 bit. This means that the values appearing on the

output side of the truth table entries will be evaluated as a single bit

and truncated before being applied to it. The solution is to either remove
the unnecessary set of brackets from the output side of the truth table

header, or add a pair of brackets around each of the values appearing

on the output side of the truth table entries.

DECLARATIONS

Address
StringData

[A15. .A0]

;

[D7. .DO]

;

TRUTH_TABLE ( [AddrValid

[ 1

[ 1

[ 1

[ 1

Address] ->StringData)
Ah0100]-> Ah46
Ah0101]-> Ah52
Ah0102]-> Ah45
Ah0103]-> Ah44

Figure A. 17 Truth table with nested sets
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DECLARATIONS

Bits [Bl,B0];

A [A1,A0]|
Y [Y3,Y2,Y1,Y0]|

TRDTH_TABLE ([Bits, A ]->[ Y ])

[ 1 ,
Ab01]-> Ab0010;

[ 1 ,
AblO]-> Ab0100;

[ 2 ,
Ab01]-> Ab0100;

[ 2 ,
AblO]-> AblOOO;

"Nested too far

Figure A. 18 Truth table with set nesting problem

A.7 TEST VECTORS

Test vectors are used to describe stimulus and expected outputs for

logic simulation. The test vector format is similar to the truth table

format; it has a header that describes the input and output signals, and
corresponding entries describing input and output values.

Test Vector Headers

Like truth table headers, test vector headers consist of sets of signals

that define the inputs and outputs to be used in the subsequent entries.

A sample test vector header is

TESTJVECTORS ( [Clock, Address, Reset] -> [Sf lag, Data]

)

This truth table header lists the identifiers Clock, Address, and Reset
(which may be either signals or sets of signals) as inputs and identifiers

Sjlag and Data as outputs. The use of the -> operator is required and
is used regardless of whether the outputs being tested are combina-
tional or registered.

Test Vector Entries

The entries in a test vector section, like those of a truth table, must
consist of sets ofnumeric values or special constants, and the set widths
used in the entries must match the set widths specified in the header.

All the special constants listed in Figure A. 19 are valid.

The test vector section shown in Figure A.20 demonstrates how special

constants are entered in the test vector entries. Note that the .X. special
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Constant

.C.

.D.

.F.

.K.

P.

.U.

.X.

.z.

Description

Clock (drive input low-high-low).

Down edge (drive input high-low).

Floating input or output.

Negative clock (high-low-high).

Output registers preload.

Up edge (drive input low-high).

Don't-care input or output.

High impedence (three-state)

Figure A. 19 ABEL special constants

constant used in test vectors has a different meaning than no-connect.

When .X. is used in equations and other logic descriptions, it is used
strictly as a place holder to create sets of matched widths. In truth

tables, .X. can be used to indicate that an output is unspecified, which
may or may not result in a don't-care being generated by the compiler
(depending on the optimization-related signal attributes used, and
whether @DCSET was specified). In test vectors, .X. indicates a don't-

care in simulation. Depending on the simulator used, this may be an
actual don't-care logic value or an input or output whose value is simply

ignored.

A.8 MACROS
ABEL macros are used to define sequences ofABEL statements or other

text that can be invoked repeatedly within an ABEL module. Macros
can include parameters, making it possible to describe context-sensi-

tive, parameterized functions. A macro declaration has the following

form:

macro_name MACRO (optional_argiiments) { text_body] ;

TEST_VECTORS ( [Clock , Reset , Address] -> [Sf lag Data]

)

[ .C. , -X. ]->[ • X. ] ;

[ .c. 1 ,
Ah0100 ]->[ 1 A h46]

;

[ .C. 1 ,
Ah0101 ]->[ 1 A h52]

;

[ .c. 1 ,*h0102 ]->[ 1 A h45]

;

[ .c. 1 ,
Ah0103 ]->[ 1 Ah44]

;

Figure A.20 Test vectors section
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ABEL macros provide a basic text substitution mechanism. The body
of the macro, which is enclosed in curly braces, is not processed by the

compiler until the macro is actually referenced elsewhere in the design

description. Wherever a macro name appears in the ABEL module in

which it was declared, the text of the macro body is inserted into the

ABEL design description. If the macro includes parameters, then the

actual parameters specified when the macro is invoked are substituted

for the dummy arguments appearing in the macro body. The following

macro declaration includes such parameters:

Compare MACRO (Argl, Arg2) {?Argl == ?Arg2>;

In this example, Argl and Arg2 are listed as macro parameters and
appear in the text body of the macro as dummy arguments. Dummy
arguments are identified by the ? character prefix. When this macro is

invoked with actual arguments, the resulting text is inserted into the

design description and processed by the language compiler. Since the

text appearing in the macro body is not processed by the language
compiler until the macro is invoked, syntax errors within the macro
body are not detected until the macro is invoked.

Macros Versus Constant Declarations

The ability to pass arguments into macros is one reason to use macros
rather than constant expressions. Another reason to use macros is for

general text-substitution purposes. In many situations, either a macro
or a constant declaration could be used to achieve the same purpose,

and in these cases which to use is really a matter of style. There are

important differences between macros and constant declarations, how-
ever, which must be understood. Since macros are a simple text-sub-

stitution mechanism, you must be careful not to make assumptions
about operator priority when specifying logic expressions in them.
Consider, for example, the following macro and constant declarations:

Selectl MACRO {Addr > AhE000};

Selectl = Addr > AhEOOO;

Although these two declarations appear very similar, they are actually

very different. If Selectl is used in the context of a larger expression,

such as in

Trigger = Selectl & ! Reset;
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then the two types of declarations will result in different equations.

Since macros are simply a text substitution mechanism, the result of

using the Selectl macro will be an equation of the form

Trigger = Addr > A hE00O & ! Reset;

which is probably not the desired result. Why? Because the AND
operator (&) has a higher priority than relational operators such as >.

This means that the equation will evaluate incorrectly. To get around
this problem, the macro must be modified with parentheses:

Selectl MACRO {(Addr > A hE000)};

Constant expressions, since they are evaluated at the time they are

declared, will always maintain the expected operator priority and order

of operation, so it is not necessary to enclose them in parenthesis. To
avoid evaluation errors when using macros, it is a good idea to place

parentheses around all macros containing logic expressions. For con-
sistency, it doesn't hurt to do the same for all nontrivial constant

expressions as well.

A.9 DIRECTIVES

Directives instruct the language compiler to interrupt processing and
perform such things as text insertion, looping, and conditional compi-

lation. Directives can also be used to change certain compiler options

such as the default number system (radix) or the processing of don't-

cares. Directives can appear any place in an ABEL design description

and do not have to be located within a module. Figure A. 21 lists the

directives supported in ABEL.

Like other ABEL keywords, directive names may be entered in upper-

case, lowercase or mixed case.

ABEL's many directives can seem confusing at first, but they are

actually extremely powerful and should be used whenever possible to

simplify design descriptions. The most common use of directives is in

the specification of tabular or repetitive data. Test vectors (and truth

tables) tend to involve repeated sequences of values, so for these

applications the looping and text substitution capabilities of ABEL
directives are particularly useful.
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©ALTERNATE ©IFDEF ©IRPC
©CONST ©IFIDEN ©MESSAGE
©DCSET ©IFNB ©ONSET
©EXIT ©IFNDEF ©PAGE
©EXPR ©IFNIDEN ©RADIX
©IF ©INCLUDE ©REPEAT
©IFB ©IRP ©STANDARD

Figure A.21 ABEL compiler directives

Looping and Text Processing Directives

©INCLUDE

The ©INCLUDE directive inserts the contents of the specified file at the

point where the directive appears. ©INCLUDE directives can be nested,

so multiple levels of include files can be used. Include files are useful

for storing commonly used macros, constant declarations and other

ABEL statements or for breaking a large design into multiple files. The
following statement, for example, includes a file into the current design

description:

©INCLUDE 'stateval.inc' "Include the state values

©CONST

The ©CONST directive provides a simple method for declaring or

redefining numeric constants. ©CONST is useful for creating or modi-
fying values that are used within loops or macros. When a constant is

defined using ©CONST, any existing declaration for that constant is

overridden. The following is an example of how a ©CONST directive can
be used to create a sequence of incrementing values that count from
to 99 (in this case within a test vector section):

test_vectors ( [SelectA, SelectB, A , B ] -> [DataOut]

)

©CONST addr = 0;

©REPEAT 100 {

[ 1,0, addr ,.x.]->[ addr ]

;

©CONST addr = addr + 1;

)

The terminating semicolon is required for all ©CONST directives.
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@IF

The @IF directive is used to conditionally include blocks of text into the
design description. This directive tests a numeric expression and, if the
expression is nonzero, causes the text within the block to be inserted

in the design description. The following example causes a block of text

to be included when the indicated relational expression evaluates to

true:

<?IF (bit > (msb - shiftby))
{0EXPR {ShftR} bit; = 1;} "Shift in Is from left

A terminating semicolon is not required after an @IF directive or in any
other place where a terminating curly brace is provided. The expression

specified after the @IF directive can include dummy arguments, so @IF
directives can be included within macros.

@IFB

The @IFB directive is similar to the @IF directive, but operates on text

sequences rather than on numeric values. If the text within the @IFB
directive's argument is blank (has zero characters), the text located in

the block will be inserted in the design description. The following

example tests whether the indicated character sequence (which is a
passed into the directive as a macro dummy argument) is zero length:

@IFB (?text) {©MESSAGE 'The argument was blank.'}

Unlike other ABEL language statements, spaces are significant in @IFB
directives. A common mistake is to add extra spaces around an actual

or dummy argument, resulting in the directive evaluating false no
matter what sequence of characters is passed into the directive:

@IFB ( ?text ) {©MESSAGE 'This will never print!'}

As with other @IF... directives, no terminating semicolon is required

after the closing curly brace.

@IFNB

The @IFNB directive is the inverse of the @IFB directive and tests if the

text within the directive's argument is nonblank (has one or more
characters.) If the argument is nonblank, the text located in the

subsequent block will be inserted in the design description. The follow-
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ing example tests whether the indicated character sequence (which is

passed into the directive as a macro dummy argument) is nonblank:

9IFNB (?text) {©MESSAGE 'The argument was not blank.'}

As with @IFB, no terminating semicolon is required after the closing

curly brace.

@IFDEF

The @IFDEF directive tests whether an identifier name has been pre-

viously defined and, if so, includes the specified block of text in the

design description. This is useful for error checking in complex macros
and include files or for conditionally including blocks of ABEL state-

ments based on arguments specified on the language compiler's com-
mand line. The following sample shows how an ABEL statement can be
included in the design if a user-defined command line argument is

specified:

MODULE mydesign (myoptimizef lag)

©IFDEF (?myoptimizeflag) {

0DCSET "Turn on don't-care processing
}

Since the @IFDEF tests only whether the specified argument is defined,

and not its value, then this example will detect only whether an
argument was specified on the command line, not that argument's
value. If the user typed in ABELCOMP mydesign -arg 0", for example,
the myoptimizejlag argument would be defined, and the @IFDEF test

would still cause the text to be inserted.

@IFNDEF

©IFNDEF is the inverse of the @IFDEF directive and tests whether an
identifier name is currently undefined. If the specified argument is

undefined, the specified block of text is included in the design descrip-

tion. The following sample shows how an ABEL statement can be
included in the design if a macro identifier is undefined:

GIFNDEF (MyFavoriteMacro) {

©INCLUDE 'xnymacros . inc

'

}
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©IFIDEN

The @IFIDEN directive allows two sequences of text characters to be
compared and a subsequent block of text be included if the two
sequences are identical. The comparison is case sensitive, so the
following ©IFIDEN test will fail:

©IFIDEN (A_String / a_string)
{©MESSAGE 'They are identical'}

Notice that the specified sequences are not enclosed in single quotes,

and therefore do not have to be ABEL strings. The text sequences can
be dummy arguments, which allows ©IFIDEN directives to be used
within macros.

As with the @IFB and @IFNB directives, the ©IFIDEN and ©IFNIDEN
directives are sensitive to extra spaces appearing in the argument list.

The following @IFIDEN directive will not work:

©IFIDEN (Fred, Fred)
{©MESSAGE 'This message will not print!'}

@IFNIDEN

The ©IFNIDEN directive is the inverse of the ©IFIDEN directive. ©IF-
NIDEN compares two sequences of text characters and includes the

subsequent block of text if the two sequences are different. The com-
parison is case sensitive, so the following ©IFNIDEN test will pass:

©IFNIDEN (A_String,a_string)
{©MESSAGE 'They are different'}

©REPEAT

The ©REPEAT directive causes a block of text to be repeated the number
of times specified. Any valid numeric expression can be used as the

repeat count. When a block of text is specified using ©REPEAT (or any
other text-substitution directive), the text to be included will be exactly

as specified between the curly brace delimiters. This means that no line

terminators (line feed or equivalent) or spaces will be added if the block

of text is entered as a single line. This is normally of no consequence,

since multiple ABEL statements can be placed on a single line ofa design
description. The following example demonstrates how a ©REPEAT
directive can be used to create a repetitive block of test vectors:
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tost_vectors
( [clock, Reset ,Halt, select] -> [Statereg, data]

)

"Reset the machine and let the outputs stabilize...
&REPEAT 10 {

L • C— • / J. / X/ • x • J
—

*•*
I • x • / • x • j /

@IRP

The @IRP directive allows a block of text to be repeated n times, where
n is the number ofarguments appearing in the directive's argument list.

The @IRP directive includes one dummy argument that is used to

indicate where in the block of text the actual arguments are to be
substituted each time the block of text is repeated. Each time the block

of text is repeated, a new argument is substituted until all arguments
have been used.

The following example of @IRP generates test vectors for six different

input values:

test_vectors ( [addrl5 . .addrO] -> [databyte]

)

@IRP address

(

AhA0 30, AhA060, AhC030, AhC060 #
AhE030, Ah£060)

{ ?address -> AhFF; }

Since the @IRP directive is a text substitution mechanism, the actual

arguments listed in the argument list can be of any type. If the

arguments are sequences of characters that are being concatenated or

used in some other way in which their precise format is important, then
you must remember that any spaces found in the argument list will also

be passed into the body of the directive.

©irpc

The @IRPC directive is similar to the @IRP directive, but operates on
individual characters rather than on distinct arguments. An @IRPC
directives accepts one actual argument, and repeats n times, where n
is the number of characters in that argument. The following example
uses an @IRPC directive to generate a sequence of 20 state names and
corresponding sequential values:

©CONST sval - 0;

SIRPC Stateid (ABCDEFGHIJKLMNOPQRST) {

State?stateid = sval; "StateA = 0, StateB = 1, etc.
OCONST sval = sval + 1;

)
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@EXPR

The @EXPR directive is used to insert a numeric value into the ABEL
file. The numeric text can be created from any valid expression that

evaluates to a number. This directive can also include an optional text

string (enclosed in curly braces) that is to be appended to the beginning
of the numeric value. The ©EXPR directive is most often used to create

signal names from complex expressions and can be used to perform set

indexing operations or other functions that require compile-time name
generation. For example, the following ©REPEAT loop uses the @EXPR
directive to repetitively index into the members of an input and output
set, creating the equivalent of a shift function:

equations
©const index = 0;

©REPEAT 15

{©EXPR {A} index-1; = ©EXPR {B} index; ;} "An-1 = Bn

A terminating semicolon is required for all @EXPR directives. This
terminating semicolon is not inserted into the design description, so for

this example an additional semicolon is required to complete the

equation produced in each iteration of the ©REPEAT loop.

©SETSIZE

The ©SETSIZE directive is used to determine the set width of any ABEL
set expression. This directive is useful within macros or ©REPEAT
blocks when a set argument of unknown size is being operated on. The
©SETSIZE directive can be combined with set range operations to

perform complex manipulations on sets of arbitrary sizes. The following

ABEL macro, for example, will cause a 4-bit value (represented by the

first argument A) to be assigned to the highest four bits of a set of

unknown size (represented by argument B):

SetHighNibble macro (A, B)

{ ©if (©setsize ?A; != 4)

{©message 'Set A is not 4 bits!'}
©if (©setsize ?B; < 4)

{©message 'Set B is too small!'}
?B[@setsize(?B) ;-l. .©setsize (?B) ;-4] = ?A;

};
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Compile Options Directives

©RADIX

The ©RADIX directive changes the default number system. If ©RADIX
is not specified, the default number system is base 10 (decimal). The
©RADIX directive can be used to specify base 2 (binary), base 8 (octal),

base 10 (decimal) or base 16 (hexadecimal) number systems. If you are

changing the default number system repeatedly within a design descrip-

tion, you must remember to use the number system currently in effect

when respecifying the ©RADIX directive. The following example changes
the radix from base 10 to base 16, and then back to base 10:

©RADIX 16 "Change to hexadecimal

©RADIX A "Change back to decimal

No matter what default number system is being used, the Ab, Ao, Ad or
Ah radix modifiers can be used at any point to enter a number in a
different number system. The statement

©RADIX AdlO

will change the default number system back to base 10 regardless of

the default number system in effect.

©CARRY

The ©CARRY directive allows you to specify how a large set expression

(such as a counter, comparators, or adders) is converted into equations
by the language compiler. Normally (when ©CARRY is not specified) the

compiler will flatten all equations into two-level (sum of products)

equations using the rules defined in Section A. 3. When ©CARRY is

specified, though, these expressions are translated into multilevel

equations that preserve carry operations from one stage of the operation

to another. The ©CARRY directive accepts a numeric argument that

specifies how many bits of a set expression are to be grouped between
carries. This allows you to tailor the design to the specific needs of a
target device or architecture.

The following example shows how ©CARRY can be specified to allow a
very large (56-bit) counter to be described. In this case, a value of 2 was
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specified for the design, meaning that the equations generated for the
counter will have one carry signal (in the form of an automatically
generated combinational node) for every two bits of the counter:

@carry 2;

[q55..q0] := ([q55..q0] + 1) & 'Reset;

Without the ©CARRY directive, this design equation would expand to

an impractical amount of logic (so much logic, in fact, that it would
overwhelm the language compiler.)

To disable carry generation, a value of can be specified in the ©CARRY
directive:

©carry 0; "Turn off automatic node generation

@DCSET

The ©DCSET directive enables don't-care generation and optimization

for all subsequent state diagrams and truth tables. When ©DCSET is

specified, on-set and off-set equations (see Chapter 3 for a complete

description of these terms) are generated for transitions to 1 and
states, respectively. Unspecified state diagram transitions or truth table

input combinations become don't-cares when processed by the com-
piler. When ©DCSET is specified, it is important to write logic descrip-

tions that do not conflict. If the same input combination is covered by
two or more transitions to different states, for example, an error will

occur in the compiler or in the logic optimizer (ABELOPT).

The ©ONSET directive disables don't-care generation and optimization

for all subsequent logic descriptions. If ©ONSET is specified (or

©DCSET was not specified earlier in the design description) then the

language compiler will generate only the on-set portion of the logic for

state diagrams and truth tables. All input conditions not included in

the on-set, including unspecified conditions and transitions, will be-

come part of the off-set when processed by the compiler. An alternative

to the ©DCSET directive, if you need pin-by-pin control over don't-care

processing, is to use the 'dc' signal attribute. (The ©DCSET and
©ONSET directives override the 'pos', 'neg', and 'dc' directives, if these

signal attributes have been specified.)

©DCSTATE

The ©DCSTATE directive enables don't-care generation and optimiza-

tion for state diagrams outputs. When ©DCSTATE is specified, all state
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diagram transitions (consisting ofcurrent state and transition condition

combinations) are combined and logically complemented to form a set

of don't-care conditions for the circuit. These don't-cares are then
applied to all equations in the design. This can result in a substantial

reduction of logic for state machine outputs. This processing can be
extremely time consuming for large state machines, however.

The ©DCSTATE directive must be used in combination with either the

'dc' directive (applied to each state machine output) or with the ©DCSET
directive.

©ALTERNATE

The ©ALTERNATE directive instructs the compiler to use an alternative

set ofBoolean operator symbols. The alternate operators are those used
in the PALASM language and are shown in the table of Figure A. 22.

When the ©ALTERNATE directive is in effect, the arithmetic operations

normally represented by the +, * and /symbols are not available.

©STANDARD

The ©STANDARD directive changes the Boolean operators back to the

standard set.

Miscellaneous Directives

©EXIT

The ©EXIT directive will cause the language compiler to stop processing
the file and exit immediately without attempting to write an Open-ABEL
output file. This directive is useful for error checking within complex

Boolean Standard Alternate

Operation_ Symbol Symbol
NOT ! /

AND & *

OR # +
XOR $ :+:

XNOR !$
.*.

Figure A.22 ABEL alternative operators
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macros, or when a design description requires that arguments be
specified on the command line. The following example uses this feature

to check that the user defined command line arguments have been
properly specified:

MODULE MyModule (myoption)

©IFNDEF (?myoption) {

©MESSAGE 'You must specify an argument'
©EXIT

}

©MESSAGE

The ©MESSAGE directive (which we have used in examples of previous

directives) allows you to specify a text string that is to be displayed when
the language compiler is running. ©MESSAGE directives are useful for

debugging complex design descriptions and for reporting status during

long compilations.

@PAGE

The ©PAGE directive instructs the language compiler to send a form-

feed character to the list file. If no list file is been specified on the

command line, this directive is ignored.
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The ABEL
Software
ABEL (Advanced Boolean Expression Language) is a design language
and set of supporting software programs that allow complex logic

designs to be entered, compiled, simulated, and mapped into a program-
mable logic device. To create a design using ABEL, you use the text

editor provided in the ABEL design environment or any text editor that

produces standard ASCII files. When your design is ready for process-

ing, you invoke the various ABEL programs to simulate the design,

choose a target device, and produce a JEDEC format data file for device

programming. The ABEL design environment is easy to use, and the

on-line help available in the software contains detailed information

about program options and operation.

The software provided with this book includes all the significant features

of the ABEL version 5.0 software. These features include the following:

• Extended memory support

• Windows compatible user interface

• On-line help

• ABEL 5.0 language features

• Espresso logic reduction

• Automatic pin and node assignment (device fitting)

• Simulation (equation and JEDEC)

279
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This software has been made available by Data I/O Corporation. Data
I/O releases new versions of software on a regular basis, and new
features are frequently being added to the language and to the product
in general. For this reason, the commercial software available from Data
I/O at any given time may be significantly different from the software

supplied with this book.

Device Support

The software supplied with this book supports a limited number of

devices. These devices are representative of the range of PLDs available,

and most of them are available from several sources. The primary
manufacturer of each device is listed along with the device name in the
chart of Figure B. 1

.

The list of devices includes one complex PLD that requires additional

information related to device fitting and optimization. This device, the
Mach 215 complex PLD, is described in detail in Appendix C. We do not

recommend that you try using the Mach 215 device until you have a
complete understanding of simpler configurable devices, such as the

18CV8.

Device Manufacturer Pins Notes

P16L8 AMD 1

, others 20 (DIP) Combinational PAL (neq. polarity)

P16H8 AMD, others 20 (DIP) Combinational PAL (pos. polarity)

P16P8 AMD, others 20 (DIP) Combinational PAL (prog, polarity)

P16R4 AMD, others 20 (DIP) PAL, D-type flip-flops (4)

P16R6 AMD, others 20 (DIP) Registered PAL, D-type flip-flops (6)

P16R8 AMD, others 20 (DIP) Registered PAL, D-type flip-flops (8)

P20X8 AMD, others 24 (DIP) Registered PAL, XOR outputs

E0320 Altera, others 20 (DIP) Configurable macrocell PLD

P18CV8 ICT
2

, others 20 (DIP) Configurable macrocell PLD

Mach 215 AMD, others 44 (LCC) Complex PLD with buried nodes
1 Advanced Micro Devices, Incorporated

international CMOS Technology, Incorporated

Figure B.l Devices supported by the ABEL software included with this book
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Installation and System Requirements

The ABEL software requires an IBM-compatible computer with an
80386 or higher processor and at least 4 MB of extended memory to

operate. The software is fully compatible with Microsoft Windows, and
can be operated from the DOS command line, or from within the

Windows environment.

To install the ABEL software, insert disk number 1 into your disk drive

and type

A:INSTALL

at the DOS prompt (assuming the disk drive is drive A). The installation

software will prompt you for an installation directory and will copy the

files accordingly. The installation software will also, ifrequested, modify

yourAUTOEXEC.BAT and CONFIG.SYS files to add the software to your
system path. If you do not wish to have the installation software modify
your AUTOEXEC.BAT and CONFIG.SYS files, you must add the instal-

lation directory to your path and add the ABEL5DEV environment
variable to your environment. If the software is installed in the C:\ABEL
directory, for example, you would add C:\ABEL to your path and add
the statement

SET ABEL5DEV=C:\ABEL

to your AUTOEXEC.BAT file.

You should also check to make sure that the FILES variable in your
CONFIG.SYS file is set to at least 30 before running the ABEL software.

Running the Software

To invoke the ABEL design environment from DOS, type the command

ABEL5

After you have invoked the ABEL5 design environment, you can load a
design by selecting Open from the File menu. As an alternative, you can
run the ABEL5 design environment from within Windows, either by
creating a File Manager association (associate files that have a .ABL file

name extension with the ABEL5.EXE program) or by creating a new
program item. You can customize your Windows installation ofABEL5
(for example, have it come up in a window, rather than full screen) by
creating a .PIF file. For detailed information on how to use Windows .PIF

files with DOS-based applications, refer to your Windows documenta-
tion.
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For detailed information about the operation of the ABEL software and
the ABEL design environment, refer to the on-line help available in the

Help menu. For help on any of the menus, dialogue boxes, or program
options, press function key Fl.

Note: The ABEL software is memory-extended using a DPMI-compatible
DOS extender. If you are unable to compile ABEL designs due to DOS
extender and memory manager incompatibilities (indicated by a DPMI-
related error message appearing during the compile operation), you
should run the ABEL software from a Windows DOS box, in either

full-screen or windowed mode, rather than running the software directly

from DOS.
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Mach 215 Special
Device Information
This appendix describes the Mach 215 device and the Mach 215 device

fitting software that is included with this book. Several examples are

presented to show how various fitting strategies can be used with the

Mach 215.

C.1 MACH 21 5 DEVICE ARCHITECTURE

General Architecture

The Mach 215 device has four PAL blocks whose inputs are connected
by a switch matrix (see Figure C. 1). Configurable output macrocells are

tied to the outputs of the PAL blocks, with each PAL block having eight

macrocells. The device also has four dedicated inputs and two global

clocks that go directly into the switch matrix. The global clocks can be
used as both clocks and inputs. The function of the switch matrix is to

take the outputs of the macrocells and the connections of the dedicated

inputs and clocks and provide a routing path to the inputs of the PAL
blocks.

283
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Figured Mach 215 device architecture

Device Resources

The table of Figure C.2 lists the resources of the Mach 215 device.

Resource Count

Pins 44

I/O Pins 32

Clock Pins 2

Input Pins 4

Macrocells 32

PAL Blocks 4

Inputs to PAL Blocks 22

Figure C.2 Mach 215 device resources



C.1 MACH 215 DEVICE ARCHITECTURE 285
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Figure C.3 Mach 215 output macrocell block diagram

Mach 215 Macrocell

The macrocell of the Mach 215 device is made up of three components:
the logic generator, the logic cell, and the I/O cell. Figure C.3 shows
how these components are connected together and to the switch matrix
and PAL block.

Logic Generator

The function of the logic generator is to implement the combinational

logic equations for the macrocell. The logic generator has four local

product terms that can be connected to the local OR gate or steered

away to the OR gate of the macrocell above or below. With product term
steering, the logic generator can implement a function of up to 12

product terms (Figure C.4). The macrocells on the top and bottom of

the PAL block can only generate eight product terms because they do
not have a macrocell above or below them, respectively.

to A(n-2) from A(n-2)

From

PAL
Block

To Logic Cell

to A(/t+2) from A(n+2)

Figure C.4 Mach 215 logic generator
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Figure C.5 Mach 215 Logic cell

Logic Cell

The logic cell can be used to register the data from the logic generator

function and pass the information to the I/O cell (Figure C.5). The logic

cell can be configured as a D flip-flop, T flip-flop, active-low latch, or

combinational buffer. If configured as a storage element, the reset

product term and the preset product term are used to reset the register

or latch to or preset it to 1 , and the clock multiplexer (mux) generates

the clocking from either the global clock pin (CLK 0) or the clock product
term (CLK pt). The clocks have programmable polarity.

ABEL Dot Extensions

In ABEL, you use the .AR dot extension to describe a reset function, the

.AP dot extension to describe a preset, and the .CLK dot extension to

describe a clock. If the latch configuration is used, you use the .LE dot

extension to enable the latch. The output from the configurable register

goes to the switch matrix (via dot extension .Q or .FB) and to the

configurable polarity control. This programmable inverter feeds into the

tristate buffer, which is controlled by the output enable product term
(dot extension .OE).
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Figure C.6 Mach 215 I/O cell

I/O Cell

Figure C.6 shows the third component of the macrocell, the I/O cell.

The I/O cell consists of an I/O pin and a pin register. The I/O pin

connects to the switch matrix (.PIN or no dot extension) and to the pin

register. The pin register can be configured as a D flip-flop or an
active-low latch. The clock for the pin register comes from one of two
global clock pins (CLKO or CLK1) and can be used in either positive or

negative polarity. The pin register is generated when the ABEL equation

node := pin. PIN

or

node := pin

or

node.d= pin. PIN

is used. The pin signal can also be inverted:

nodei=\pin



288 Appendix C: Mach 215 Special Device Information

For inverted (negative polarity) pin signals, the fitter inverts the signal

on the input side of the equation and generates the message

Warning 4445: Signal signal_name is an istype 'neg'

.

The node must be a D flip-flop or a latch and cannot have a reset or

preset specified. The clock for the pin register is specified with node.C
(or node.LE for a latch).

Naming Convention

The fitter has a naming convention for both the logic cell and the pin
register that allows you to associate pin and node numbers with a
physical location in the device. The names for block A are as follows:

• Logic cells: AO, A2, A4, A6, A8, A10, A12, A14
• Pin registers: Al, A3, A5, A7, A9, Al 1, A13, A15

The logic cell An is tied to the pin register A(n + 1). Block B, C, and D
have logic cells Bn, Cn, and Dn and pin registers B(n + 1), C[n + 1), and
D(n+ 1) respectively. In all cases, the logic cells have even numbers and
the pin registers have odd numbers.

Figure C.7 lists the pin and node numbers of the MACH 215 device and
their relationship with logic cells and pin registers. You can use this

information to assign signals to physical locations on the device. The
examples in the next section show how this is done.

C.2 DESIGN STRATEGIES

When a large design is placed into a Mach 215 by the device fitting

software, many resource assignments must be made in addition to pin

assignment and macrocell configuration. Because of the segmented
architecture of the Mach 215, several factors affect the possibility of a
given design fitting into the device. These factors include the following:

Pin and node preassignments

Signal groups

• Fitter options

• Design specification

Routing and dot extensions
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Pin Name Node Name Pin Name Node Name

1 GND — ~ 23 GND — —

2 A0 45 A1 24 CO 61 C1

3 A2 46 A3 25 C2 62 C3

4 A4 47 A5 26 C4 63 C5

5 A6 48 A7 27 C6 64 C7

6 A8 49 A9 28 C8 65 C9

7 A10 50 A11 29 C10 66 C11

8 A12 51 A13 30 C12 67 C13

9 A14 52 A15 31 C14 68 C15

10 10 __ __ 32 13 __

11 11 33 14 —

12 GND 34 GND —

13 CLKO — — 35 CLK1 —

14 B14 60 B15 36 D14 76 D15

15 B12 59 B13 37 D12 75 D13

16 B10 58 B11 38 D10 74 D11

17 B8 57 B9 39 D8 73 D9

18 B6 56 B7 40 D6 72 D7

19 B4 55 B5 41 D4 71 D5

20 B2 54 B3 42 D2 70 D3

21 BO 53 B1 43 DO 69 D1

22 VCC ~ ~ 44 VCC ~ —

'—
' indicates no register for this pin

CLKO, CLK1: Global clock signals. May be used as inputs

10, II, 13, 14: Dedicated input signals.

Figure C.7 Mach 215 pin and node numbers

You can control the fitting process by preassigning pins and nodes and
specifying Keep Pin Assignments in the Fit Options dialog box of the
ABEL design environment. The preassignment of a single pin can have
a large impact on the rest of the logic in the design. For example, placing
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an output on a macrocell within a PAL block restricts fitting in the
following ways:

• The equation for the output must be placed in the macrocell (s)

within that block.

• The output's preset, reset, and output enable product terms must
be placed within that block.

• All inputs used by the output equation and its preset, reset, and
output enable product terms must be routed to that block.

• If the output's feedback is used, it must be routed to all equations

that require it.

A preassignment can affect the fitting of other signals and may cause
fitting to fail. Make preassignments only when necessary and with
consideration for the Mach 215 architecture.

Reserving Macrocells

Preassignments can be used to reserve a logic cell within a device by
assigning a signal to a pin, but not using the pin in the logic description.

The fitter treats the unused signal as an output and reserves the logic

cell and the four local product terms of the logic generator. Unused
signals without preassignments are removed by the fitter and do not

appear in the fitted design.

Using Clock Pins as Inputs

The clocks in the Mach 215 device can be used as inputs. The design

can use up to six dedicated inputs (four coming from dedicated input

pins and two from the clock pins).

Switch Matrix Restrictions

The switch matrix routes the feedback signals from the macrocells to

the PAL block inputs. The sparseness of the switch matrix increases the

speed of the Mach 215 device, but it also limits the number of ways a

feedback path can be routed. A PAL block can have more inputs than
available paths through the switch matrix. In this case, the extra inputs

cannot be used.
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Clock Restrictions

The fitter takes all the following into account and will find a clock

assignment that will minimize routing and maximize the number of pin

registers used.

• The logic cell is tied to the global clock CLKO or to the clock product

term.

• When CLKO is used, that signal has a direct connection to the logic

cell and does not need to be routed through the switch matrix.

• All inputs to the clock product term must be routed.

• The pin register is tied to global clocks CLKO or CLK1 . These clocks

have direct connections to the pin register and are not routed. There
is no clock product term on the pin register.

When making preassignments, you should also take these clock restric-

tions into account to make the most efficient use of the device.

Signal Groups

The GROUP property statement is another way to control the fitting

process. Property statements are an extension to the ABEL language
that allow device-specific information to be passed to ABEL fitters. The
syntax for the GROUP property statement is

AMDMACH property 'GROUP block signal-list' ;

where block is the name of the PAL block (A, B, C, or D), and signal-list

is a list of signals (separated by spaces) that are to be placed in that

block.

The fitter attempts to place all the signals of the group (the signal-list)

within the specified block. The fitter must place all the specified signals

in the block or fitting will be unsuccessful. If no signal groups are

specified, the fitter tries to partition the logic across the device so that

the amount of logic in the blocks is balanced and the routing between
the blocks is minimized.

Like preassignments, specifying signal groups can affect how the design
is fit in the device. Closely related signals make good grouping candi-

dates. An output signal is closely related to another output signal if it

uses the same reset, preset, and output enable resources and has
similar inputs.
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Grouping output signals is usually more effective in controlling the
partitioning process than grouping inputs. Forcing an input to a block
causes the fitter to find a route from that input to all blocks that use it,

but has little effect on the partitioning for other signals. On the other

hand, grouping a single output could give the fitter a different starting

point and dramatically different results.

Design Specification

The way a logic description is specified affects the fitter's solution. You
can improve the chance of a fit by verifying that the device has enough
inputs, outputs, product terms, and clocks, and by the way you specify

the logic. The "Design Examples" section gives several examples on how
to specify logic to improve the chances of a fit in the Mach 215.

Routing and Dot Extensions

Logic cells have two feedback paths: one from the I/O pin and one from
the logic cell internal location (see "Internal Feedback" for more infor-

mation). The router in the Mach fitter routes from the internal feedback

path if you specify .Q or .FB and from the pin feedback path for .PIN.

If a signal is declared as a node, the router uses only the internal path.

If a route is not available internally, the router attempts to route the

signal from the pin and displays the message

Warning 4443: No fit for internal signal -- changing to
PIN to re-try.

If the following conditions are met, the router routes from the pin or

internally, normalizing the pin polarity, if necessary, to maintain the

same functionality:

• A signal is declared as a pin

• An explicit route is not specified (with .Q, .FB, or .PIN)

• The tristate control is not specified (that is, it is always an output)

For example, the router may route from the pin route to blocks A and
B and from the internal route to blocks C and D.
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C.3 DESIGN EXAMPLES

Example files for the Mach 215 device can be found in the \MACH215
directory located on the distribution disk and installation directory.

Automatic Equation Splitting

The fitter automatically splits equations that have more than 12 product
terms for the Mach 215 device. For example, the design shown in Figure

C.8 has a signal named Parity that has 36 product terms. When fitting

to the Mach 215 device, the fitter generates and places the following

message into the fitter report file:

Warning 4421: Signal Parity has 36 terms (max is 12).

Number of nodes created = 3

Output Parity is now a function of:

Parity with 12 terms.

Parity 1 with 12 terms.

Parity 2 with 12 terms.

The fitter rewrites the equation for Parity so that it is a function of the

created subequations, Parity__0, Parity__l, and Parity__2. These
subequations have 12 product terms each and implement the 36
product terms. Parity itself becomes a function of three product terms.

To see the actual equations that are generated by the fitter, process the

split2 1 5.abl design example and select the View/Fitted Equations menu
item in the ABEL design environment

After an equation is split, it has an extra level of delay. Parity above will

have two levels of delay. The fitter will always generate a message when
an equation is split, and will create new nodes by appending number
to the signal being split. (For this reason, you should avoid using two
consecutive underscore characters when naming signals in your ABEL
source file.)
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MODULE split215
TITLE 'Illustrates splitting in Mach 215 fitter'

DECLARATIONS
split215 DEVICE 'mach215a';

"Inputs
Clk, Ml, MO
Re set 1, Reset 2, Pre set 1, Preset

2

"Outputs
CarryO , Cnt 7Reg
Cnt7 , Cntl5up, Cntl5dn, LdO
Parity, Pulsel6,Div32
Q7,Q6,Q5,Q4,Q3,Q2,Q1,Q0

"Sets and Constants

PIP-

PIN;

PIN ISTYPE
PIN ISTYPE
PIN ISTYPE
PIN ISTYPE

' REG, BUFFER '

;

'COM';

'COM';

'REG_T, BUFFER'

Count = [Q/7..Q0];

Mode = [Ml, MO];
Up = [ 0, 0];

Down = [ 0, 1]

;

Load = [ 1, X]

;

Reset = [Reset 2 , Reset 1 ];

Preset = [Preset2, Presetl]

;

EQUATIONS
Count .

t

Count . oe

=
( ( Count .

q

# (Count.

q

# Count
= (Mode == Up)

Count. elk = Clk;

Count. ar = Resetl & Reset 2;

Count. ap = Presetl & Preset 2;

CarryO := (Count. q == 254) &

# (Count. q == 1) &

Cnt 7 Reg := ( Count. q == 7);

[CarryO, Cnt 7Reg] .elk = Clk;

[CarryO, Cnt7Reg] .AR = 0;

[CarryO, Cnt 7Reg] .AP = 0;

Cnt7
Cntl5up
Cntl5dn
LdO
Pulsel6
Div32
Parity

+ 1) & (Mode == Up)
- 1) & (Mode == Down)

& (Mode == Load)

)

# (Mode == Down)

;

$ Count. q;

(Mode == Up)

(Mode == Down)

;

= (Count .q == 7)

;

= (Count. q == 15) &
= (Count. q == 15) &
= (Count. q ==0) &

(Mode == Up)

;

(Mode == Down)

;

(Mode == Load)

;

- (Count. q == [X,X,X,X,1,1,1,1] );

= (Count. q == [X,X,X,1,X,X,X,X] );

= (Q6 $ (Q5 $ Q4)) $ ((Q3 & Q2) $ (Ql & Q0)

)

DECLARATIONS
XOR,TMP PIN ISTYPE 'COM'

EQUATIONS
XOR
TMP

= (TMP $ Q6.q) !$ Q7.q;
QO.q & Ql.q fc Q2.q & Q3.q & Q4.q & q5.q;

END

Figure C.8 Design that requires equation splitting
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Intermediate Expressions

The Mach 215 device limits the number of product terms allowed on
any one macrocell, as well as the number of inputs to the PAL block.

Thus, the number of product terms in an equation and the number of

inputs that the product terms use affect the chances for a fit. Equations

that have more product terms than allowed by the device are automat-
ically split into multiple levels of logic by the fitter. While this does

generate a viable solution, your knowledge of the logic may help you to

create a more efficient solution.

Whenever possible, specify intermediate expressions: subequations
used within two or more other equations. This specification introduces

an extra level of delay, but reduces the number of macrocells used.

Intermediate expressions can be used to decrease the number of

product terms required and to decrease the number of inputs required

for one or more product terms.

Probably the most useful multilevel synthesis technique is rewriting two
or more outputs so that they are functions of an intermediate variable.

(This technique was described in Chapter 3.)

Decreasing the Number of Product Terms

In some cases, there are no subexpressions common to two or more
outputs. In this case, splitting off a piece of logic to reduce the number
ofproduct terms can increase the chance ofa fit. The fitter automatically

splits equations that have too many product terms in an attempt to find

a split that minimizes the amount of routing required and the number
of macrocells needed to implement the new equations.

You can also do manual equation splitting, if required. For an equation
with too many product terms, creating an intermediate variable is done
as follows.

Original equation:

x = a#b#c#d#e#f#g#h#i;

Split equation:

tmp =a#b#c#d;
x=tmp#e#f#g#h#i;
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Both of the above implementations require three macrocells. However,
the second uses an additional level of logic, and the fitter now has two
smaller pieces of logic to fit. The signal tmp can be placed in one block,

and the signal x can be placed in another, so all the inputs do not need
to be routed to one block.

Decreasing the Inputs to a Product Term

If the number of inputs to a product term exceeds the number of inputs

to a PAL block, the fitter cannot place the signal that uses that product
term. Even if the number of inputs in the product term is less than is

allowed in a PAL block, a product term may not fit because all its inputs

must be routed to that block, and no route may be available in the switch

matrix.

A technique similar to that used in the previous section can be used to

split large AND terms. In the Mach 215 device, each PAL block can have
up to 22 inputs. Any one AND term can have at most 22 inputs or it

will not fit into a block. You may want to splitAND terms that are smaller

than the PAL input limit but large enough to cause routing problems.

Split large AND terms as follows:

Original AND term:

x = a&b&c&d&e&f&g&h&i;

Split AND term:

tmp =a&b&c&d&e;
x = tmp &£&g&h&i;

The fitter will route the second solution more easily.

The GROUP Property Statement

The source file listed in Figure C.9 shows a sample use of the GROUP
property statememt.

Internal Feedback

The MACH 215 architecture allows two feedback paths from the logic

cell register: the pin and an internal path. Pin feedback is specified by
using only the signal name of the pin (or the signal name with a .PIN
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MODULE bus 2 15

TITLE 'Bus-loadable 8-bit up/down counter
buscntr DEVICE 'mach215a';

"Inputs
Clk,Ml,M0
Reset 1 , Re set 2 , Preset 1 , Preset

2

"Outputs
Carry , Cnt 7Reg
Cnt7,Cntl5up,Cntl5dn,LdO
Pulsel6,Div32
Q7,Q6,Q5,Q4,Q3,Q2,Q1,Q0

"Sets and Constants
Z / X , C = .Z./.X./.C./

Data I/O Corp

Count = [Q7..Q0: ;

Mode = [Ml, MO]

Dp = [ 0, 0]

Down = [ 0, 1],

Load = [ 1, X],

Reset = [Reset2 , Reset

1

Preset = [Preset;i, Preset

PIN;
PIN;

PIN ISTYPE 'REG, BUFFER';
PIN ISTYPE 'COM';
PIN ISTYPE 'COM';
PIN ISTYPE 'REG_T, BUFFER

AMDMACH property 'GROUP A Q7 Q6 Q5 Q4 Q3 Q2 Ql Q0 '

;

AMDMACH property 'GROUP B CarryO Cnt 7 Cntl5up';
AMDMACH property 'GROUP B Cntl5dn Cnt7Reg Pulsel6 Div32';

EQUATIONS
Count .

t

= ( (Count .q + 1)

# (Count. a - 1)

# Count
Count. oe = (Mode Up) #

Count. elk = Clk;

Count. ar = Resetl & Reset 2;

Count. ap = Presetl & Preset 2;

CarryO := (Count. q == 254) &

# ( Count. q == 1) &

Cnt 7 Reg : ( Count. q = 7);
[CarryO, Cnt7Reg] .elk = Clk;
[CarryO, Cnt7Reg] . AR = 0;

[CarryO, Cnt7Reg] .AP =0;

6 (Mode Up)

& (Mode == Down)
& (Mode == Load)

)

(Mode == Down)

;

$ Count. q;

(Mode == Up)
(Mode == Down)

;

Cnt 7 (Count .q =* 7)

;

Cntl5up = (Count. q 15) & (Mode == Up);
Cntl5dn = (Count. q == 15) & (Mode == Down);
LdO = (Count. q 0) & (Mode == Load);
Pulsel6 - (Count. q = [X,X,X,X,1,1,1,1] );

Div32 ( Count. q « [X,X,X,1,X,X,X,X] );

DECLARATIONS
XOR,TMP PIN ISTYPE 'COM';

EQUATIONS
XOR * (TMP $ Q6.q) 1$ Q7.q;
TMP QO.q & Ql.q & Q2.q & Q3.q & Q4.q

END

Figure C.9 Design with GROUP property statements

& Q5.q;
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Set

Figure CIO Dual register feedback circuit

extension). Internal register feedback is specified with the signal name
and a .FB or .Q extension. The internal combinational path is specified

with the signal name and .D. No nodes are declared to specify these

internal feedback paths.

The schematic in Figure CIO shows a simple registered circuit with
both feedback paths used. Figure C.ll shows how to specify both
feedback paths with ABEL.

Fl.Q is the output from the register before the output inverter, and
Fl .PIN is the output path after the inverter. The fitted equations are

shown below:

Fl.D = (A & B);

Fl.C (Clk);

Fl.AR = (Clr);

FLAP = (Set);
F2 = (C & Fl.PIN);
F3 = (D & Fl.Q);

The circuit shown in the schematic of Figure CIO can also be described

with the ABEL description shown in Figure C 12. Note that since Fl .FB
is normalized to the pin polarity, IF1.FB must be used to get the same
functionality as Fl.Q in the previous example.
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module ex215a
title 'Dual feedback in AMD MACH'

ex215a device 'MACH215a';
A,B,C,D pin;

Clk, Clr, Set pin;

Fl pin istype 'reg_D, invert '

;

F2,F3 pin;

ons
Fl.D A 6 B;

Fl.Clk - Clk;
Fl.AR - Clr;
FLAP Set;

F2 C 6 Fl.PIN;

F3 > D 6 Fl.Q;

"Pin Feedback
"Internal Feedback

test_vectors
( [A, B, C,D, Clk, Clr, Set] ->

[0,0,0,0, , , 1 ]
->

[0,0,1,1, , , ]
->

[0,0,0,0, , 1 , ]
->

[0,0,1,1, , , ] ->

[1,1,0,0, .C, , ]
->

[0,0,1,1, , , ]
->

[0,0,1,1, .C, , ]
->

[1,1,1,1, .C, , ]
->

end

Fl ,F2 ,F3 ])

0,0,0]

1

1

1

1

1

]

]

]

];

]

]

]

Figure C.ll Specifying register feedback paths

module ex215b
title 'Dual feedback in AMD MACH'

ex215b device 'MACH215a';

A,B,C,D pin;
Clk, Clr, Set pin;
Fl pin istype 'reg, invert'

;

F2,F3 pin;

equations
IF1 := A & B;

Fl.Clk - Clk;
Fl.AR Clr;
FLAP Set;

F2 C 6 Fl.PIN; "Pin Feedback
F3 D & 1F1.FB; "Internal Feedback

end

Figure C.12 Specifying register feedback paths with pin-to-pin dot extensions
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Ena

A
B

F1

F2

F3

Figure C.13 Dual feedback combinational circuit

Combinational Feedback

Combinational designs may also use dual feedback. The combinational
internal feedback is specified by using the .D extension on the right side

of an equation. The circuit in Figure C. 13 is described in ABEL in Figure

C.14.

Buried Registers

A buried register circuit is shown in Figure C. 1 5 and its ABEL equivalent

description is shown in Figure C. 16. All registers in the Mach 215 are

tied to pins. To bury the register, the fitter assigns the ABEL node to a
pin number. This prevents the pin from being used as an output, but it

still can be used as an input. The example shown in Figure C. 16

demonstrates how you can preassign both a node and input pin to the

same location. (The ABEL compiler generates a warning that two signals

are tied to the same location, but this is a valid operation for the Mach
215 device.)

Input Registers

The Mach 215 fitter program automatically detects and assigns input

pin registers when you write an ABEL node that is a function of a single

pin. The pin can be either an input or output. You can also force a pin

register with preassignments by assigning the node to the pin register

directly below the pin. An input register circuit is shown in Figure C. 17

and its ABEL description is shown in Figure C. 18.
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module ex215c
title 'Dual feedback on combinational output'

ex215c device 'MACH215a';

A, B,C, D,Ena
Fl
F2,F3

pin;
pin istype ' com, invert '

;

pin;

equations
Fl = A & B;

Fl.OE = Ena;

F2 = C & Fl.PIN;
F3 - D & Fl.D;

"Pin Feedback
"Internal Feedback

test_vectors ( [A, B, C, D, Ena]

[0,0,0,0,
[0,0,0,0,
[1,1,0,0,
[1,1,1,0,
[1,1,1,1,
[1,1,1,1,
[1,1,0,1,

->

->

->

->

->

->

->

->

Fl ,F2 ,F3 ]) "Array feedback
.Z.,

,

1 ,

1 ,

1 ,

1 ,

1 ,

1

1

1

]

]

]

]

1 ]

1 ]

1 ]

test_vectors ( [A,B,C,D,Ena,Fl ]
-> [Fl , F2 ,F3 ]) "Pin feedback

[0,0,0,0, ,.X.] -> [.Z., 0,0]
[1,1,1,1, , ] -> [.X., 0,1]
[1,1,1,1, , 1 ]

-> [.X., 1,1]

end

Figure C.14 Dual combinational feedback described with ABEL
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Set

Figure C.15 Burled register circuit

module ex215d
title 'Buried register example Data I/O Corp.

ex215d device 'mach215a';
A pin 2;

B,C,D,E, F pin;
Clk, Set, Clr pin;
Rl pin istype 'reg_D, buffer'

;

Bl node 2 istype ' reg_D, buffer '

;

F1,F2 pin istype 'com'

;

equations
Rl.d A & B;

Rl.clk - Clk;
Rl.ar Clr;
Rl.ap - Set;
Fl - Rl.Q 6 E;

Bl.d - C & D;

Bl.clk - Clk;
Bl.ar - Clr;
Bl.ap - Set;
F2 - Bl.Q a Fl;

end

Figure C.16 Buried register described with ABEL
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P1

Clk

Clr

O
Pin from I/O

macrocell

location n-1

AP

D Q

>

AR

R1

Buried macrocell

location n

r>^> F1

Figure C.17 Input register circuit

module ex215e
title 'Input register example Data I/O Corp.

ex215e device 'Mach215a'

;

A,B pin;
Clk pin;
R1,R2 node i 8type Tag';
Fl pin istype 'com';

equations
Rl.clk Clk;
R2.clk - Clk;
Rl : A; "positive input pin register
R2 » IB; "negative input pin register
PI « Rl & R2;

test_vectors
([Clk,A,B] -> [Fl])

[.c. ,0,0] -> [0 ];

[.C.,1,0] -> [1 ];

[ ,1,1] -> [l ];

[.c.,1,1] -> [0 ];

[ ,1,0] -> [0 ];

[.c.,1,0] -> [1 ];

end

Figure C.18 Input register described with ABEL
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Figure C. 19 T flip-flop circuit

T Flip-flops

Figures C. 19 and C.20 demonstrate how to describe T flip-flops with
ABEL.

module ex215f
title 'T FFs in AMD MACH'

ex215f device 'MACH215a';
A,B pin;
Clk,Clr,Set pin;
Rl pin istype ' reg_T, buffer '

;

R2 pin istype 'reg_T, invert'

;

equations
Rl.T = A & B;

Rl.Clk = Clk;
Rl.AR = Clr;
Rl.AP = Set;
R2.T = A & B;

R2.Clk = Clk;
R2.AR = Clr;
R2.AP = Set ;

end

Figure C.20 T flip-flop design file
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Figure C.21 Transparent latch circuit

Transparent Latches

Figures C.21 and C.22 show an ABEL-HDL description using a trans-

parent latch.

module ex215g
title 'Transparent Latch in AMD MACH 215'

ex215g device 'MACH215a';
A,B pin;
LE,Clr,Set pin;
PI pin istype ' reg_D, buffer '

;

equations
Pl.D = A & B,

Fl.LE = LE;

Fl.AR = Clr;
FLAP Set;

test_vectors
([A,B,LE , Clr, Set] -> PI ]

[0,0, 1 ,0,1 ]
-> 1 ,

[0,0, 1 ,1,0 ]
->

,

[1,1, 1 ,0,0 ]
->

, "Latched
[1,1, o ,0,0 ]

-> 1
1

"Flow Through
[0,0, ,0,0 ] ->

|

[1,1, o ,0,0 ]
-> 1

[1,1, 1 ,0,0 ]
-> 1

1
• "Latched

[0,0, 1 ,0,0 ]
-> 1 ,

end

Figure C.22 Transparent latch design file
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Chapter 12

vfg.c

/* Video Frame Grabber Control Program */

/* Copyright 1993 Michael Holley and David Pellerin */

/* Written for Microsoft C version 5.1 */

#include <conio.h>
# include <stdio.h>

#define FILESIZE 131071L

char name_buf [45]

;

main(

)

{

int ch;

print_menu ( )

;

while (1)

{

ch = getchO;
switch ( toupper ( ch)

)

{

307
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case

case

case 'W

case

case 'Q'

:

default

:

outp(0x316,0); /* Freeze Picture */

break;

outp( 0x3 14,0)

;

break;

save_RAM()

;

break;

load_RAM()

;

break;

exit(0);
break;

print_menu ( )

;

break;

/* Live Picture */

/* Write Image */

/* Read Image */

/* Quit Program */

print_menu (

)

{

print f
(

" \nFreeze video frame grabber \n ")

;

printf

(

"Press 'L' for live imageNn");
printf( "Press 'F' to freeze image\n");
printf ( "Press 'W to write image RAH to disk file\n");
printf ( "Press 'R' to read disk file into image RAM\n");
printf ( "Press 'Q' to return to DOS\n");

>

/* Copy image in VFG RAM to disk file */

save_RAM()

{

unsigned char data;
long i;

FILE *fp;

name_buf[0] = '\0';

printf ( "\nEnter file name: ");

scanf ( "%40s",name_buf )

;

if( (fp = fopen(name_buf , "wb") ) == NULL)

{

fprintf (stderr, "can't open output file '%s'\n",name_buf )

;

return;

>

outp( 0x3 13,0)

;

/* Clear address counter */

for (i=lL; i < FILESIZE; i++)

{

outp( 0x313,0); /* Next Address */

outp(0x312,0) ; /* Hold Address */

data inp( 0x300);
putc (data, fp)

;
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outp ( 0x316, 0)

;

/* Freeze Picture */

close (fp)

;

>

/* Copy a saved image from disk into VFG RAM for playback */

load_RAM()

{

unsigned char data;
long i;

FILE *fp;

name_buf[0] = '\0';

printf (
" NnRnter file name: ");

scanf ( "%40s",name_buf )

;

if( (fp = fopen(name_buf , "rb") ) == NULL)

<

fprintf (stderr, "can't open input file '%s' \n",name_buf

)

return;

}

outp (0x3 13, 0)

;

/* Clear address counter */

for (i=lL; i < FILESIZE; i++)

{

outp(0x313,0) ; /* Next Address */

outp(0x312,0); /* Hold Address */

data getc(fp);
outp (0x3 00, data)

;

}

outp ( 0x316, 0)

;

/* Freeze Picture •/

close (fp)

;

vfg2bmp.c

/•••••••••••••••••••••••••••••••••••••••••••••A*********************
* Program 2 - Format video Image and Translate to a Windows BMP File
* Copyright 1993 Michael Holley and David Pellerin
*/

/* Written for Microsoft C Version 5.1 */

# include <stdio.h>
include <conio.h>

tdefine XMAX 360 /* Number of pixel in X direction (width) */

idefine YMAX 230 /* Number of pixel in Y direction (lines) */

#define TOP_SKIP 1 /* Scan lines skipped at top of frame V
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#de£ine SIDE_SKIP /* Samples skipped at start of scan line */

FILE *outfile;
FILE *infile;

* Open the file specified on the command line
* and convert to a .BMP file. Output file name
* is PRTFILE.BMP.
*/

main ( argc , argv

)

int argc;
char *argv[]

;

{

int x, y;
int sample;

printf ( "Process video frame grabber disk file\n");

/* Open data file */

if (argc 1)

{

printf ( "Opening input file '%b ' \n" , argv[l] )

;

if( (infile = fopen (argv [1]

,

"rb n
) ) == NULL)

{

fprintf ( stderr, "can' t open input file '%s

'

" , argv[l] )

;

exit (1)

;

}

}

else
{

printf ( "Opening input file 'temp'Xn");
if( (infile = fopen ( "temp", "rb") ) « NULL)

{

fprintf (stderr, "can't open input file '%s '
"

,

"temp" )

;

exit(l)

;

}

>

/* Open output file */

printf ( "Opening output file 'prtfile.bmp'Xn" )

;

if( (outfile = fopen( "prtfile.bmp", "wb") ) == NULL)

{

fprintf (stderr, "can't open output file '%a' ", "prtfile" )

;

exit(l);

}

init_plot ( )

;

for(y-0; y < TOP_SKIP; y++)

{

f ind_hsync( )

;
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}

/* Read scan lines */

for(y 0; y < YMAX; y++)

{

for(x - 0; x < XMAX; x++)

{

sample = getc (infile)

;

fprintf (outfile, n%c"

,

sample)

;

)

find_hsync ( ) ; /* Find start of next scan line */

}

close (infile)

;

close (outfile)

;

exit(0);

}

* Find Horizontal sync pulse
*/

find_hsync (

)

{

int sync_cnt;
unsigned char sample;

sync_cnt ;

/* Look for 20 samples of zero (sync level) */

while (sync_cnt < 20)

{

sync_cnt++;
sample = getc ( infile)

;

if (sample ! 0)

{

sync_cnt 0;

}

}

/* Skip color burst samples */

while (sync_cnt < SIDE_SKIP)
{

sample = getc (infile)

;

sync_cnt++;

)

>

/••••••••••••••••••••A************************
* Initialize plot
*/

init_plot (

)

{
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long total_size, width, height

;

long offset;
int i, blue, green, red;

/* write header */

width = XMAX;
height = YMAX;
offset = 12L + 40L + (256L * 4L)

;

total_size = width * height + offset;

/* BitMapFileHeader */

fprintf (outfile, "BM" )

;

write_long(outfile, total_size)

;

write_short (outfile, 0)

;

write_short (outfile, 0)

;

write_long(outfile, of fset)

;

/* Total size of file */

/* Set to */

/* Set to */

/* Offset to bitmap */

/* BitMapInfoHeader */

write_long (outf ile, 40L)

;

write_long (outfile, width)

;

write_long(outf ile, heigth)

;

write_short (outfile, 1)

,

write_short (outfile, 8)

write_long(outfile, 0L)

write_long (outfile, 0L)

write_long( outfile, OL)

write_long (outfile, OL)

write_long (outfile, OL)

write_long (outfile, OL)

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

Size of structure
Width of bitmap
Heigth of bitmap
Set to 1

Color bits per pixel
Compression scheme
Size of bitmap
Horizontal res
Vertical res
Number of colors
Important colors

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

/* RGBQUAD */

for(i = 0; i < 256; i++)

{

blue = i & OxFE;

green = i & OxFE;
red = i & OxFE;
fprintf (outfile, '"hc%c%c%c" , blue, green, red, 0)

;

}

•/

wr i t e_l ong ( fp , lnum)
FILE *fp;

long lnum;

{

int b0,bl,b2,b3;

bO = (lnum & OxOOf f )

;

lnum = lnum >> 8;

bl (lnum & OxOOff);
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lnum lnum >> 8;

b2 (lnum & OxOOff);
lnum = lnum >> 8;

b3 (lnum 6 OxOOff);
lnum = lnum >> 8;

fprintf ( fp , %c%c%c%c n ,b0,bl,b2,b3);

}

•/

writo_short (fp, num)
PILE *fp;

int num;

<

int bO,bl;

bO = (num & OxOOff);
num = num >> 8;

bl = (num & OxOOff)

;

fprintf (fp, "%c%c",bO,bl)

;
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