
AR2O8

\r/'

v

paths, arithmetic and logic unit
(ALU), and/or fundamental opera-
tion code (op code). Generally, the
data-bus size has determined the
processor size, though perhaps the
best choice would be based on the size

of the op code. I'll talk a bit about
these features and then show how the
MC68000 is both a L6- and 32-bit
microprocessor.

Shaping a Design
Designers must make hundreds of

decisions to shape the architecture of
a new microprocessor. The needs of
the users of the new product must be
considered as the most important
factors. After all, the users are the
ones who really need a functional
product, and if they are not happy
with the features or performance,
they will keep looking for a better
alternative.

Unfortunately, it may be impossi-
ble to meet all of the needs of the
users due to certain design limita-
tions. The design must be inexpensive
enough to produce in mass quantity.
Also, current technology will permit
only certain types and numbers of
circuits to be manufactured on a

silicon chip. These are the foremost
factors that dictate the upper limits of
the capabilities of a microprocessor.

In plaruring the new 16-bit MACSS,
designers had to make a decision

concerning the general architecture
first. What should it look like? A
great deal of softrnrare written for the
MC6800 family already existed. A
processor that provides enhance-
ments over an older processor, yet
can run all of the programs for the
older processor, has a real asset: it
can capitalize on the existing softrnrare
base. This may attract users by ensur-
ing that they won't have to rewrite at
least some of their programs.

Unfortunately, architectures, such
as the early E-bit microprocessors,
were rather crude. Because they were
designed to replace logic circuits, not
enough thought was put into the
software aspect of the parts. Their
instruction set was oriented toward
hardware. The designers did not con-
sider carefully the future of these
products, their expandability and
compatibility. To try to design a

microprocessor to be compatible with
the older 8-bit parts was limiting.

Designers at Motorola decided that
the new MACSS should be the fast-
est, most flexible processor available.
They would design it for program-
mers, to make their iob easier, by
providing functions in a way that
most programmers could best use

them.
Early or, it appeared that to have a

really powerful new generation of
microprocessors, a totally new

From "Design Philosophy Behind Motorola's MC68000, Part 1: A 16-bit processor with multiple 32-bit registers." by Thomas W. Starnes appearing
in the April 1983 issue of BYTE magazine. Copyright 1983 Byte Publications, lnc. Used with the permission of Byte Publications, lnc.

From "Design Philosophy Behind Motorola's MC68000, Part 2: Data-movement, arithmetic, and logic instructions" by Thomas W. Starnes appear-
ing in the May 1983 issue of BYTE magazine. Copyright 1983 Byte Publications, lnc. Used with the permission of Byte Publications, lnc.

From "Design Philosophy Behind Motorola's MC68000, Part 3: Advanced instructions" by Thomas W. Starnes appearing in the June 19&3 issue of
BYTE magazine. Copyright 1983 Byte Publications, lnc. Used with the permission of Byte Publications, lnc.

Design Philosophy Behind
Motorola's MC68000

Part L: A L6-bit processor utith multiple 32-bit registers,

Thomas W. Starnes
Motorola Inc., Microproceseor Dlvigion

3501 Ed Bluestein Blvd.
Austin, TX 7872I

In the mid 1970s at Motorola, a new
idea was taking shape. As more and
more demands were being made on
the MC6S00 family of microproces-
sors, the push was on toward develop-
ing greater programmability of a

1&bit microprocessor. A proiect to de-
velop the MC68000, known as

Motorola's Advanced Computer Sys-
tem on Silicon (IVIACSS), was started.

The project team began with the
freedom to design this entirely new
product to best fit the needs of the
microprocessor marketplace. Devel-
opers at Motorola explored many
possibilities and made many difficult
decisions. The result can be seen in
the MC68000, viewed by most indus-
try experts as the most powerful, yet
easy to program, microprocessor
available. In this first of four articles,
I will discuss many of the philo-
sophies behind the design choices that
were made on the MC6E000.

Many criteria can qualify a
processor as an 8-, L6-, or 32-bit
device. A manufacturer might base its
label on the width of the data bus,
address bus, data sizes, internal data

About the Author
Thomas Starnes is an electrical engineer who

has spent the last fiue years helping to plan the
direction of the MC6E000 family of processor
products for Motorola.

\r/

I
REG I STE R

D4
u oF 8)

architecture should be used and that
earlier designs should be considered
as examples rather than as models.
This gave the MC6S000 designers the
freedom to introduce completely new

concepts into microprocessors and to
optimize the functionality of the new
chip.

The planners decided there was one

area in which ties to the 8-bit product
family would be advantageous with-
out exception. That area was in Pe-
ripherals. Motorola decided that this
new 16-bit microprocessor would
directly interf ace to the 8-bit

It
E FFECTIVE ADDRESS F IELD
ME}IORY A2 INCREMEilT
(I OF 12 MOoES PLUS
I OF 8 REGISTERS)

collection of MC6800 peripherals.
Because so many input/output (I/O)
operations are E-bit oriented, it
seemed logical to retain this
compatibility even though the E-bit
microprocessor interf ace would
naturally be about half as fast as a
comparable 16-bit. Compatability
with E-bit MC6E00 peripherals had the

added benef it of immediately
ensuring support of the new micro-
processor with a complete family of
peripheral chips, rather than requir-
ing a wait of perhaps years for 16-bit
versions to become available.

Expanded Capabilities
A properly designed 16-bit micro-

processor has many advantages over
the most sophisticated 8-bit micro-
processor, esp'ecially to the
programmer (see figures 1 and 2). The
8 bits of op code for the smaller
processor provide only 256 different
instruction variations. This may seem
to be a lot at first glance, but consider
the following.

If the microprocessor has two reg-
isters from which to move and ma-
nipulate data, those two registers
require 1 bit for encoding the op
code. If four different addressing
modes are offered for accessing mem-
ory data, these require 2 more bits for
encoding. This leaves the micropro-
cessor with only 5 bits with which to
encode the operation to be per-
formed. Only 32 different operations
can be performed.

Now admittedly this is plenty of
operations for most applications, but
realize that only two data registers
and four memory-addressing modes
are not very many to someone doing
serious programming. Registers are
there for fast data manipulation, and
constantly swapping the contents of
too few registers is not very fast. A
more powerful microprocessor would
have many registers, and they would
all have to be accessible by the
different operations.

Additionally, the more addressing
modes you have for accessing mem-
ory data, the more efficiently you can
get values in memory. Obviously, 6
bits of op code cannot give the micro-
processor both the variety and the
number of operations that a good
16-bit microprocessor can. With
64,000 different instructions possible
in a 16-bit op code, you can perform
far more complex operations.

This, then, is the real advantage of
16-bit over 8-bit microprocessors to
the programmer. A 16-bit micropro-
cessor will have twice the data-bus
width of the 8-bit version. This wider
bus allows twice as much information
to go in and out of the processor in
the same amount of time. This can,
with proper internal design, almost
double the rate at which operations
take place over the rate of a similar
E-bit machine. Sixteen-bit micropro-

MC6800 0P CODE

r000r0ll

Y,
0- A
1-B

AOORESS MODE

OO - IMMEDIATE
OI - DIRECT
IO.INDEXEO
II.EXTENDED

OPEiATIOII

$o - suETRAcr
I. COTPAR€
2.SUITRACT W/CARiY
a- A1{0
6-elr
6- LOAO
7. STORE
T.EICLUSIYE OR

9-AOO W/CARRY
A.OR
B. ADD

Flgure 1: Op code organization for the MC6S00. Thb processor is limited in its abilities
because of its 4-bit size.

MC68000 0P coDE

llollo0l0l0ll0l0

OPE RATION
ADD

,.,,loRl
FRoM (o) I

MEMoRY I
OPE RAN D

16 Btrs
(8, 16' OR

srzE

32 BtTS)

Flgure 2: The MC68@0 ADD instruction op code shous the poutet aoailable utith

IGbit operations. Multipte regbters with pariable operand sizes and a large address field
gfue a programmer tremendous fleribility in ptogramming.

Y-,

MC6E010
Motorala has recently deueloped an

improoed version of the MC68000: the
MC6fi01.0. It ts completely compatible
a;dlth obiect codes of earlier uersions of
the 6800A and has added airatal mem-
ory support and improved loop in-
struction ex,ecution,.

By using uirtual memory techniques,
the 68A10 can appear to access up to 1.6

megabytes of metnory uthen con-
siderably less physical memory rs

aoailable to a user, The physical mem-
ory can be accessd bV the micropro-
ceslor afiile a much larger "oirtudl"
memory b maintained as an image on a
secondary storage deui,ce such as a
floppV disk. When the microprocessor
is instructed to access a location in the
virual memory that b not utithin the
physical memory ftefened to as a pagg
fault), the access b suspended while the
location and data are retriwed from
the floppV disk and placed into
physical memory. Then the suspended
Access is completed. The 6801"0

prouides hardware support for oirtwl
memory with the ability to suspend an
instruction athen a page fault is

detected and then to complete the
instruction after physical memory has
been updated.

The MC6S01,A uses instruction con-
tinuation rather than instruction
restart to support pirtual memory.
When a page fault occurs, the micro-
processor stores its internal state on the
superoisor stack. When the page fault
has been repaired, the preuious
internal state is reloaded into the
microprocessor, and it continues utith
the suspended iratruction. lnstruction
continuation has the additional ad-
uantage of handling hardware support

for uirtual I/O devices.
As mentioned in the body of thb

article, the 68A00 uses a prefetch queue
to im,prove the speed of instruction
execution, The 6ffi70 goes one step

further by making the prefetch queue
more intelligmt. Detection of a three-
utord looping instraction will put the
microprocessor into a special mode. ln
this loop madc, the microprocessor
utill need only to make data transfers
on the bus, because it htches up the
queue and executes the instruction
repeatedly out of the queue. Once the
termination condition for the loop is

reached, normal operation of the pre-

fetch quette is resumed. Thb operation
is inoisible to the programmer and
prouides efficient execution of
prograttt loops.

v

v

n
U
F=

H
I-l

E

LI NEAR

FFFFFFFF

00000000

PAGED
(PAGE REGISTER I:
(ADDRESS REGISTER I

FF:FFFF

FF: 0 000

0l:0000

00:0000

SEGMENT ED
(SEGMENT REGISTER I :
(ADDRESS REGISTER I
ARE ADDED

2C:FFFF

2C:0000

A5: FFFF

A5:0000

cessors should give the programmer
far greater flexibility in coding and
perform similar operations in less

than half the time of an 8-bit micro-
Processor.

Memory Accessing
Users of the 8-bit microprocessors

originally had difficulty imagining
what kind of programs could fill up
64K bytes of memory. Many systems
had n-o more than 8K bytes of ROM
(read-only memory) and RAI\4 (ran-
dom-access read/write memory). But
as time went on and the general
software base grew, systems with up
to 64K bytes of memory became more
prevalent. Either code had to become
more efficient or ways of fitting more
than 64K bytes of memory in a sys-
tem had to be developed. Sixteen-bit
microprocessors could make code
more efficient.

In planning MACSS, designers
foresaw that the 16-bit, 64K-byte ad-
dressing range of popular 6-bit micro-

processors would be quickly out-
grown by the newly proposed micro-
processor. Each additional bit of
address could double the addressing
range of the processor.

Look at the techniques of expand-
ing beyond a 16-bit addressing range
and analyze the design trade-offs (see

figure 3). You could extend the
addressing range of early computers
and minicomputers simply by ap-
pending some additional bits to the
most significant of the 16 address
bits. These additional bits were
usually stored in an additional
register, the page register. This
method is called paging, because you
work out of one page at a time. The
page is set manually, and the lower
16-bits of address are included in the
instruction stream or registers.

Paging has the advantage of being
quite simple to implement in the
processor. No real circuit change is
needed over the straightforward
16-bit addressing, because all the

Figure 3: Three methods of addressing
memory, The Linear method arranges a

contiguous memory area. The Paged
method organizes memory into blocks or
pages of a prescribed length. The
Segmented method giues each user or
program a specific area in memory. Both
the Paged and the Segmented method
giue the programmer access to only a

small portion of memory.

expansion is done simply by append-
ing bits to the core. It also has the
advantage of having fairly dense
code, because only 16 bits of address
are carried around in the instructions.

However, there are many dis-
advantages to paging. The program-
mer is limited to accessing only the
particular page of memory that
happens to be set in the page register.
To be assured that the right page is
being used requires a check to see

what is currently in the page register,
possibly saving that page number,
and loading the register with the
desired page number. This takes time
and requires both additional thought
by the programmer and additional

v

code in the software. This additional
code typically takes up the room
saved by carrying around only 16 bits
of address.

One way to get around the single-
page limitation of paging is to
provide many page registers. Other
characteristics that determine which
register will be active on a particular
bus cycle include instruction fetch,
data read/write, and stack access.

While these additional registers give
the programmer access to more than
one page at a time, there is still only
one page available for each type of
access.

Some extensions to paging came
out to compensate for some of the
I osses experienced in paging .

Segmentation, for example, follows
the same general principles of
pagination. The key difference in
segmentation is that the page number
becomes a segment number and the
segment number is essentially added
to the core 16-bit address. This allows
some relocation of the core address

but still forces the programmer to
check that the desired segment is
loacied, and limits the range of any
segment to only 64K bytes of
memory.

To a programmer, the simPlest
address technique is a direct address-
ing of any memory location. This
would be without regard for whether
the wanted data is near recentlY
accessed data or whether it is miles
aw?y. The programmer wants a

linear view of data, that is, the ability
to specify a very simple, albeit long,
address that will access any data.

Now, beyond the processor's mem-

ory-addressing method, memorY
management is sometimes used. With
it more sophisticated systems dynam-
ically relocate or control the various
blocks of memory. This is done for
protection purposes in larger systems.

The advantage is that you can protect
one user's work space from the de-

vastating effects of another user's

poor programs running amuck. To
this end, a separate memory manage-
ment unit (MMU), in conjunction
with the operating system, performs
some addition to or translation of an

address. This technique may sound

similar to paging and segmenting
memory, but this is done to serve a

completely different purpose, and in
a different way. The application
program writer never sees this
memory management and writes
code as though the entire memory
were available.

To expand the memory space on
the MACSS, the best option, though
not the easiest to implement on the
chip, is a linear address space. This
space is not broken up by paging,
segmentation, or banking schemes. It
is a very simple addressing technique,
requiring the least effort by the
programmer, while still allowing
more advanced operations such as

memory management.
A linear address is simply a

straightforward 32-bit, for example,
address. The address space is not
broken up into blocks; and it is
contiguous. Accessing such an
address merely requires the
expression of the 32-bits in the
instruction or using a single address
register. For convenience, if the upper
16 bits of the address are either all 0s

or all 1s, then a shorter, 16-bit form
of the address can be sign-extended to
automatically provide the correct
address. This is the way the MC68000
accesses memory and I/O.

How big an address space should a
16-bit microprocessor address? The
natural address sizes greater than
16 bits are 24 and 32 bits, which are 3
and 4 bytes long, resPectively. For a

16-bit microprocessor, the odd num-
ber of bytes becomes slightly un-
wieldy. Looking a little further into
the future, it seemed that even the 16

megabytes of a 24-bit address might
not meet the needs of large systems.

While 32 bits of address, reaching 4
gigabytes of mem oty , seems tremen-
dous, once the need for more than 16

bits is established , 32 bits is the next
most convenient size. It takes exactly
two 16-bit bus transfers to move an
address into the processor, and once
the second transfer is needed, ?s it
would be even for an 18-bit address,
it is iust as well to use the whole 16
bits brought in. Thus, engineers
selected a virtual-memory address
space of 32 bits for the MC68000.

Now, from a practical packaging
standpoint, 32 address signal lines are
quite a few. The placement of inte-
grated circuits (lCs) in dual inline
packages (DIPs) with greater than 40
leads was rare before 1980. With only
a few systems in the early '80s requir-
ing more than 16 megabytes of mem-
ory, it seemed a reasonable trade-off
to bring only the 24 least significant
address bits to the outside world.
That way fewer pins would be
required, and MACSS could fit with-
in a 64-pin DIP. Still, all 32 bits of
address are maintained within the
processor, and there are simple means
of determining the upper 8 bits'
values.

Multiple Registers
With the size of the memory

address space determined, it was
easier to settle on the register scheme
of the new processor. The size and the
number of registers had to be de-
cided.

Designers originally envisioned
onboard registers for a processor
because operating on memory data
requires a time-consuming transfer
across the external bus. It just
happens that in programming most
data is operated on a number of times
in succession before a result is ob-
tained. Often many combinations
with many different data pieces are
used. The merging of these two
observations leads to onboard or on-
chip registers for fast manipulation of
frequently used data.

It seems that from the day registers
were brought into the processor,
programmers have wanted more
registers for their use. The goal, then,
when designing processors, is to
provide as many registers as possible
for the programmer. In the MC6600,
only two registers (e and B) were
available for data manipulation, and
one index register (X) to point to non-
stack data. These few registers are
being loaded and saved almost as

often as the data within them is ma-
nipulated.

The loading and saving of registers
is usually wasted time. The amount
of time spent bringing data into on-
chip registers for fast manipulation

J

t)

t)

