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INTRODUCTION

Early in the history of computers, programmers found
that their programs were increasing in size until they were
literally larger than the addressing range of the computer. To
solve this problem, a technique called virtual memory was in-
vented. This technique allows the programmer to use a larger
address space for his programs than the physical address
space of the main memory by automatically storing and
retrieving parts of the program in secondary memory (usually
a disk).

The original virtual memory technique, as implemented by
IBM, used a main memory addressing scheme which
referenced a page table to get a pointer into a block table. In
turn, this pointer was used to form the physical address. This
meant that every memory reference required three main
memory references. The use of a cache of addresses in an
associative memory can cut this time significantly.

This paper presents a design for a virtual memory machine
using the currently available MC68000 microprocessor
(MPU) and the MC68451 memory management unit
(MMU). The presentation includes a discussion on some
problems inherent to virtual memory design and the methods
used to resolve these problems.

DESIGN GOALS

In this design, the user program (called a task) is allowed
to request and receive from the operating system more
memory than is physically available. The operating system
then allocates some minimum amount of memory to the task
and constructs a segment or segments in the MMU to
describe the page allocated. If the task then tries to access
memory which has not been physically allocated, an undefin-
ed segment access error is generated by the MMU. The MMU
then asserts the FAULT signal to indicate that a page fault
has occurred.

Once a page fault has occurred, some mechanism must be
available to locate and fix the fault. This consists of deter-
mining if the present page has been modified and, if it has, to
save it on the disk. The new page containing the location
whose address caused the page fault must then be loaded

from the disk into memory. The segment descriptor(s) which
describe the page in the MMU must then be modified to
reflect the new memory configuration.

Two approaches toward the achievement of these goals are
presented. These are the bus cycle rerun method and the bus
cycle suspension method.

BUS CYCLE RERUN METHOD

The obvious candidate to fix the page fault is the MPU, as
it has access to both the MMU and the DMAC. Unfortunate-
ly, the bus cycle which caused the fault must be rerun after
the fault has been fixed in order to continue executing the
program. The MC68000 can rerun bus cycles by using the bus
error (BERR) and halt (HALT) signals. However, the MPU
is in the halt state between the aborted cycle and the rerun cy-
cle and cannot fix a page fault while it is halted. Therefore,
another bus master must perform this function and, since
this bus master and the main MPU can share memory
management routines, this could be an MC68000 MPU as
well.

A block diagram of a bus rerun type of system is shown in
Figure 1. The MPU labeled Executor serves as the main pro-
cessor, executing the operating system and the user tasks.
The Fixer is responsible for fixing page faults. Since both
MPUs share a common bus, the bus request (BR) and bus
grant (BG) control signals are used by the control logic to
allow only one MPU at a time to use the bus. K

When a page fault occurs, the BERR, HALT, and BR
lines on the Executor are asserted. This causes the current
bus cycle to be terminated and the Executor to be halted. As
soon as the cycle terminates, the MPU relinquishes the bus.
The control logic then releases the Fixer by negating its BR
line and the Fixer takes control of the bus and fixes the page
fault. After resolving the page fault, the Fixer writes to a
special location to toggle a flip-flop which causes the swap to
occur. The BR line on the Fixer is asserted and it is removed
from the bus. The HALT and BR lines on the Executor are
then negated and the Executor performs the bus rerun and
then continues executing the user task.
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While this method is relatively conservative of hardware, it
does have one major drawback. In order to preserve the inte-
grity of semaphores useful in multi-processor applications,
read-modify-write bus cycles cannot be rerun. In practice,

this means that user applications programs may not use the
test and set (TAS) instructions in the bus cycle rerun method.
Since it may not be possible to apply this restriction, par-
ticularly on vendor-supplied software, another method is
proposed.
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FIGURE 1 — Bus Cycle Rerun System Block Diagram

BUS CYCLE SUSPENSION METHOD

The MC68000 has an asynchronous bus interface. The
MPU asserts address strobe (AS) to indicate a valid address
on the address bus and one of the upper or lower data strobes
(UDS) or (LDS) to indicate valid data during a write cycle.
The MPU then expects a data transfer acknowledge
(DTACK) response signal to be asserted, indicating that the
data has been accepted (write) or is valid (read). If DTACK
has not been asserted by the falling edge of state four (S4) of
the system clock, the MPU idles, inserting wait states until
DTACK is asserted. The bus cycle is therefore suspended
until DTACK is asserted and this delay can be used by the
Fixer to fix the page fault.

A block diagram of a system using this method is shown in
Figure 2. Since the Executor is driving the address, control
and, possibly, the data buses during the ‘‘suspension,’’ three-
state buffers are needed to isolate these signals from the
system bus while the Fixer is active. The Fixer is held off the
bus while the Executor is active with the BR signal. This
signal causes all buses and control signals on the Fixer to
enter the high-impedance state and to halt.

When the Executor executes a bus cycle wherein a page
fault occurs, the MMU withholds the mapped address strobe

(MAS) and asserts the FAULT signal. This action disables
the three-state buffers and removes the Executor from the
system bus. Since the data transfer acknowledge line on the
Executor (DTACK(E)) is held negated by a pullup resistor,
the Executor idles in the wait state. Asserted FAULT also
negates the BR line to the Fixer and releases the Fixer to con-
trol the bus. After performing the fix, the Fixer writes to a
selected location to cause a swap. Signal BR(F) is again
asserted, removing the Fixer from the bus and allowing the
suspended bus access of the Executor to be completed. Signal
DTACK(E) is then asserted by the addressed memory block
or peripheral and the cycle wherein the page fault occurred
terminates. The Executor then continues with the user task.

The tradeoff in this method is the amount of hardware re-
quired versus a versatile instruction handling capability.
Although the control logic is less complex, three-state buffers
are required for the address, data, and control buses of the
Executor. Also, multiplexers are needed for the address and
bus request lines. However, all instructions, including TAS,
can be used on this system. Thus, this method is preferred as
it results in a more powerful and versatile system. A design
incorporating this method is described in detail in the follow-
ing paragraphs.
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FIGURE 2 — Suspended Bus Cycle System Block Diagram

A DESIGN USING THE CYCLE
SUSPENSION METHOD

Figure 3 shows a schematic diagram of a virtual memory
machine using two MC68000L8 microprocessors. The Ex-
ecutor is isolated from the system bus by three-state buffers.
These buffers are controlled by the E/F signal generated by
control logic flip-flops Ul and U2. When E/F is low, the
buffers are enabled and the Executor is in control of the bus.
When E/F is high, the buffers are in the high-impendance
state and the Executor is removed from the bus. The control
logic uses the SWAP-BR signal to remove the Fixer from the
bus while the Executor is processing.

The system address strobe, AS(S), is derived from the
multiplexed address strobes of the Executor (AS(E)) and the
Fixer (AS(F)). The address control logic flip-flops U3 and U4
use the ASE/ASF signal to_select either AS(E) or AS(F) as
the system address strobe AS(S). When ASE/ASF is low,
AS(S) is AS(E) and when it is high, AS(S) is AS(F). This
signal is asserted one clock cycle after E/F to allow for
address setup time to the MMU.

The bus request handshake lines, BR, E, and BGACK
are similarly multiplexed with gates U18 through U26 to
allow the DMAC to request the bus from the current pro-
cessor in control. The select line of this multiplexer is E/F.

The MMU can assert FAULT for an undefined segment
access (USA) and a write violation (WV). This creates a
problem in that in this system, a USA may or may not be an
error. If the task is attempting to access memory granted to it
by the operating system but not physically allocated (virtual
memory) then this constitutes a page fault and the Fixer can
resolve it. If the access is to a location not requested by the
task, the USA is an error and an exception must be forced on
the Executor. Similarly, a write violation is an attempt by a
user task to write a write-protected segment. This is also an
error and must be terminated. The write violation error
(WVERR) signal is used to resolve this problem.

The Fixer can assert the WVERR signal by performing a
read at a specified location. In turn, WVERR asserts the Ex-
ecutor BERR line, forcing the Executor to abort the access
and take the bus error exception when it regains the bus.
Thus, the Fixer is allowed to deal with true USA and WV
€errors.




weibBeiq onewayog weisAg 8joA) sng pepuadsng — € JHNOIA

980
ZHN 8

1/1d
0EC890W

M/Y

qu QWOOODW

P
HOLIMS

410
)10

1ax14
000890W

(4)30v.1d

dy3d

n
dd

SN

an

N Gt

(4)SY

¢04-004

M/d A0VvO8

§La-0a g
€LV-LY

sa1'san £

HE-dVMS

/

d43AM

sa1

san
Sv

NN

NIM

o/l
-Alowa N

€V-LVY
§1a-0a

€ZVd-lvd

N

as

11nv4d

LGV89OW

A0v.id

¢04-004

§1avd-0avd

H438-AM

A0 yg

11VH R

N

Jsia

SN

I3g3y = w2
Hovo8

@novia

4434

J0INd8x3

(3)SV 000890

204-004
M/Y

§1a-0a

£ev-LY
$01'san

zn

OVIAQ




Bujwi 1esey weisAs — ¢ JUNOIS
‘aunnoJ dnx1j 0} SBYOURIQ UBY} (SI0108A JUBIBHIP)

‘uonelado suibaq pue wsalsAs Buneiado speo| J01noex3 (9 Uoley JOJO8A 10INO8X8 10} uoneledasd ul NN dn sies Jexlq (G
4018} 10108A papuadsns saysiuly 101Nd8x3 (G ‘uoIINOaXa sulbaq pue SI0108A 1ieIsal $8ydl8) Jaxi4 (f
‘we)sAs 0} Sy aplAoid 0) paussse SI ISy Jale| Y000 auQ (¢ ‘papuadsns s| Yd1a} JOID8A ‘paxo0|q SI J0IN08xXd O} YOV 1d (€
B ‘pPB|qeUS ale 101N0aX8 WO} Sayng (€ '$10}09A 11B1S81 Uolay O} 1dwalle NdN Yiog ‘peiebau si1esay (Z
'snq saysinbuijel 1ax|y ‘paliesse si 1axiy 0} Hg (g ‘palebau s| 1ax|) 0} Yg ‘pa|qesip
‘19181621 di|} 0} SeIIM Jaxi4 (| S| J0}N08X8 WOJ} J8}nNg ‘18sal Ul 8le 1axlj pue 1oinoaxs yiog (|
suoneladQ suibag 101n08X3 pue dyAAS SWi0ylad Jexi4 «——— S10109/\ S8YD1a4 JoxI4 ‘19Say Uu| 101N0eX3 III"

4438-AM

11Nnvd

348v/38

<

473

48-dVMS

(4)X0v.Ld

(F)IAOV.Ld

(S)0v.Ld

§1a-0d

g%
v i oo ol S o . L

Lot )

V-V

%

%)
<
=

)8V

e

o

<
g -
— ]

B

(S)SY

=

feéeleeeééefee

EEL |4 %
2gfrily
T T I
IA
Agi=rF 5t
s Vi
485/

A0

LB TR [ 9SMMEETZLO LOMMMME €210



An MC68230 Parallel Interface/Timer (PI/T) is provided
as a watchdog timer to terminate any accesses to unpopu-
lated addresses. In addition, the PI/T has a number of
“null’” registers which, when accessed, return DTACK with
no other effect. The ‘‘null’’ register at location $1F is used by
the control logic to allow the Fixer to cause an MPU switch.
A write to this location causes SWAP-BR to be asserted,
causing the Fixer to relinquish the bus. A read of the same
location asserts BERR to the Executor. If the PI/T is not in-
cluded, some means of generating DTACK for the switch
register must be used.

OPERATIONAL DESCRIPTION

Resetting the System

The system must be initialized before it can begin opera-
tion. This is accomplished by resetting both processors.
Refer to the schematic in Figure 3 and the timing diagram in
Figure 4 for the following.

First the RESET and HALT lines of both MPUs are
asserted by the external reset signal. This sets flip-flops Ul
and U2 via AND gate US. The outputs of these flip-flops are
SWAP-BR and E/F, respectively. A high on E/F, in turn,
sets flip-flops U3 and U4 forcing ASE/ASF high. In this
state, the buffers from the Executor are disabled and the
Fixer is in control of the system bus. When RESET/HALT is
negated, the Fixer fetches its restart vectors and begins execu-
tion of the boot ROM. T

The fixer must first initialize the MMU. Since E/F is ORed
with BGACK from the DMAC, it shares the second set of
eight entries in the address space table. Hence, the Fixer
should load a descriptor which corresponds to the operating
system segment for the Executor. Then, when control is
switched to the Fixer during a fault, its address space allows
it to address and execute the fixup routines.

After setting up the MMU, the Fixer then writes to the
switch location in the PI/T. A write to $1F causes the output
of U7 to go low, asserting SWITCH. This clears flip-flop U2,
asserting SWAP-BR. When this write cycle is finished, MAS
and DTACK(S) are negated and clock flip-flop Ul. The out-
put of Ul, E/F, goes low, enabling the buffers from the Ex-
ecutor. When E/F goes low, flip-flops U3 and U4 are releas-
ed from preset and ASE/ASF goes low after two rising edges
of the system clock. This allows an address setup time before
AS(S) is asserted.

After RESET/HALT is negated, the Executor begins a
read bus cycle to fetch its restart vector and waits for
DTACK(E) to be asserted. However, its buffers are disabled
while the Fixer initializes the MMU. Then, after its buffers
are enabled, a valid address is put on the system address bus
and AS(S) is asserted. The read is completed and the memory
unit asserts DTACK(E). The Executor then begins execution.
First, it initializes the MMU and then loads the operating
system. User tasks are then processed using the loader and
other system utilities.

Page Fault

Refer to the timing diagram in Figure 5 and assume that
the Executor is running in user mode and is executing a user
task. It attempts to read from a logical address not presently
in physical memory. The MMU detects an undefined seg-
ment access and asserts the FAULT line. Signal MAS is not
asserted, so memory does not return DTACK. When
FAULT goes low, Ul and U2 are preset, negating SWAP-BR
and forcing E/F high. This removes the executor from the
bus and blocks DTACK. The Fixer, with BR released, starts
a bus cycle in approximately 3 clock cycles.

The Fixer then reads the MMU to determine what sort of
fault caused the switch. If it was a bona fide page fault, it
checks the M (modified) bit in the segment status register to
see if the segment had been written to. If so, the DMAC is
programmed to write the page to the disk. The page with the
address of the suspended bus cycle is then loaded into
memory from the disk. Then the page table is updated to
reflect the new logical base address of the segment(s). That
done, the page fault fix cycle is complete.

To accomplish the processor switch, the Fixer then writes
to the switch register and the switch sequence described
above is initiated. The buffers are enabled and the address
strobe multiplexer is switched to allow the asserted AS(E) to
reach the MMU. The MMU does the translation, the
memory unit performs the access and asserts DTACK, and
the suspended cycle is completed.

Undefined Segment Accesses and Write Violations

The last case to be covered is that of a genuine error on the
part of the user program. If the user task attempts a memory
reference outside of its defined address space or attempts to
write to a location that has been defined as read-only by the
operating system, the MMU does not assert MAS but asserts
FAULT. Refer to the timing diagram in Figure 6 and assume
that the Executor is in control of the bus and is attempting to
write to a write-protected segment. The MMU asserts
FAULT causing the switch to the Fixer. The Fixer then reads
the segment status register and finds that the fault was caused
by a WV and the Fixer then executes a test-and-set (TAS) in-
struction on the switch register. The read portion of the TAS
instruction causes WVERR to be asserted. In turn WVERR
generates the WV-BERR signal at the Q output of flip-flop
U27. Signal WV-BERR then assserts BERR on the Executor
via gate UlS. The Executor then terminates the suspended
write cycle. When AS(E) is negated, U27 is preset and the
WV-BERR signal is negated. The Executor then begins
stacking for the bus error exception but, since the buffers are
disabled, DTACK(E) is not returned and the MPU waits.

The write portion of the TAS instruction executed by the
Fixer then asserts SWITCH and the Fixer is removed from
the bus. When ASE/ASF goes high, AS(S) is asserted and
the write for the stack operation of the Executor is made.
Signal DTACK(E) is asserted and the bus error handling
routine is taken.

SOFTWARE

The routines to drive this system are not uncommon to
operating systems. Many of the same memory management
routines necessary to a multi-tasking system can be shared
between the Fixer and the Executor. The flow chart for an
example driver routine is given in Figure 7. Although the
Fixer could be used to execute any of the operating system
functions, no advantage would be gained. However, if a
slower, less expensive MPU is used, overhead is minimized if
the code which it has to execute is also minimized.

CAUTIONS

This implementation assumes that the entire machine, in-
cluding the software, is a finite machine. In particular, it has
been assumed that the DMAC is not made active if the
possibility of a page fault occurring exists. If the BR line
from the DMAC is asynchronous with the FAULT line from
the MMU, there exists the possibility of the system hanging.
This depends on the implementation of the DMAC bus arbi-
tration circuits, as it is possible to supply a BG signal without
a BR from the DMAC.
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Motorola reserves the right to make changes to any products herein to improve reliability, function or design. Motorola does not assume any liability arising
out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.






