| -

AR208

Design Philosophy Behind
Motorola’s MC68000

Part 1: A 16-bit processor with multiple 32-bit registers.

In the mid 1970s at Motorola, a new
idea was taking shape. As more and
more demands were being made on
the MC6800 family of microproces-
sors, the push was on toward develop-
ing greater programmability of a
16-bit microprocessor. A project to de-
velop the MC68000, known as
Motorola’s Advanced Computer Sys-
tem on Silicon (MACSS), was started.

The project team began with the
freedom to design this entirely new
product to best fit the needs of the
microprocessor marketplace. Devel-
opers at Motorola explored many
possibilities and made many difficult
decisions. The result can be seen in
the MC68000, viewed by most indus-
try experts as the most powerful, yet
easy to program, microprocessor
available. In this first of four articles,
I will discuss many of the philo-
sophies behind the design choices that
were made on the MC68000.

Many criteria can qualify a
processor as an 8-, 16-, or 32-bit
device. A manufacturer might base its
label on the width of the data bus,
address bus, data sizes, internal data

About the Author

Thomas Starnes is an electrical engineer who
has spent the last five years helping to plan the
direction of the MC68000 family of processor
products for Motorola.

Thomas W. Starnes
Motorola Inc., Microprocessor Division
3501 Ed Bluestein Blvd.

Austin, TX 78721

paths, arithmetic and logic unit
(ALU), and/or fundamental opera-
tion code (op code). Generally, the
data-bus size has determined the
processor size, though perhaps the
best choice would be based on the size
of the op code. I'll talk a bit about
these features and then show how the
MC68000 is both a 16- and 32-bit
microprocessor.

Shaping a Design

Designers must make hundreds of
decisions to shape the architecture of
a new microprocessor. The needs of
the users of the new product must be
considered as the most important
factors. After all, the users are the
ones who really need a functional
product, and if they are not happy
with the features or performance,
they will keep looking for a better
alternative.

Unfortunately, it may be impossi-
ble to meet all of the needs of the
users due to certain design limita-
tions. The design must be inexpensive
enough to produce in mass quantity.
Also, current technology will permit
only certain types and numbers of
circuits to be manufactured on a
silicon chip. These are the foremost
factors that dictate the upper limits of
the capabilities of a microprocessor.

In planning the new 16-bit MACSS,
designers had to make a decision

concerning the general architecture
first. What should it look like? A
great deal of software written for the
MC6800 family already existed. A
processor that provides enhance-
ments over an older processor, yet
can run all of the programs for the
older processor, has a real asset: it
can capitalize on the existing software
base. This may attract users by ensur-
ing that they won't have to rewrite at
least some of their programs.

Unfortunately, architectures, such
as the early 8-bit microprocessors,
were rather crude. Because they were
designed to replace logic circuits, not
enough thought was put into the
software aspect of the parts. Their
instruction set was oriented toward
hardware. The designers did not con-
sider carefully the future of these
products, their expandability and
compatibility. To try to design a
microprocessor to be compatible with
the older 8-bit parts was limiting.

Designers at Motorola decided that
the new MACSS should be the fast-
est, most flexible processor available.
They would design it for program-
mers, to make their job easier, by
providing functions in a way that
most programmers could best use
them.

Early on, it appeared that to have a
really powerful new generation of
microprocessors, a totally new

From "'Design Philosophy Behind Motorola’s MC68000, Part 1: A 16-bit processor with multiple 32-bit registers.”” by Thomas W. Starnes appearing
in the April 1983 issue of BYTE magazine. Copyright 1983 Byte Publications, Inc. Used with the permission of Byte Publications, Inc.

From ''Design Philosophy Behind Motorola’s MC68000, Part 2: Data-movement, arithmetic, and logic instructions’ by Thomas W. Starnes appear-
ing in the May 1983 issue of BYTE magazine. Copyright 1983 Byte Publications, Inc. Used with the permission of Byte Publications, Inc.

From “'Design Philosophy Behind Motorola’s MC68000, Part 3: Advanced instructions’ by Thomas W. Starnes appearing in the June 1983 issue of
BYTE magazine. Copyright 1983 Byte Publications, Inc. Used with the permission of Byte Publications, Inc.

MC6800 OP CODE

REGISTER

0-A
1-8

ADDRESS MODE
00- IMMEDIATE

01-DIRECT
10- INDEXED

11-EXTENDED

OPERATION

$0- SUBTRACT
1- COMPARE
2- SUBTRACT W/CARRY
4- AND
5-BIT
6-LOAD
7- STORE
8- EXCLUSIVE OR
9- ADD W/CARRY
A-OR
B- ADD

Figure 1: Op code organization for the MC6800. This processor is limited in its abilities

because of its 8-bit size.

MC68000 OP CODE

1 i 1 1 1 1 1 1 1 1 | 1 1 1
OPERATION |\) N J
ADD ‘

REGISTER EFFECTIVE ADDRESS FIELD
D4 MEMORY A2 INCREMENT
(1 OF 8) (1 OF 12 MODES PLUS
1 OF 8 REGISTERS)
T0(1) OR
FROM (0)
MEMORY

OPERAND SIZE
16 BITS
(8,16, OR 32 BITS)

Figure 2: The MC68000 ADD instruction op code shows the power available with
16-bit operations. Multiple registers with variable operand sizes and a large address field
give a programmer tremendous flexibility in programming.

architecture should be used and that
earlier designs should be considered
as examples rather than as models.
This gave the MC68000 designers the
freedom to introduce completely new
concepts into microprocessors and to
optimize the functionality of the new
chip.

The planners decided there was one
area in which ties to the 8-bit product
family would be advantageous with-
out exception. That area was in pe-
ripherals. Motorola decided that this
new 16-bit microprocessor would
directly interface to the 8-bit

collection of MC6800 peripherals.
Because so many input/output (I/0O)
operations are 8-bit oriented, it
seemed logical to retain this
compatibility even though the 8-bit
microprocessor interface would
naturally be about half as fast as a
comparable 16-bit. Compatability
with 8-bit MC6800 peripherals had the
added benefit of immediately
ensuring support of the new micro-
processor with a complete family of
peripheral chips, rather than requir-
ing a wait of perhaps years for 16-bit
versions to become available.

Expanded Capabilities

A properly designed 16-bit micro-
processor has many advantages over
the most sophisticated 8-bit micro-
processor, especially to the
programmer (see figures 1 and 2). The
8 bits of op code for the smaller
processor provide only 256 different
instruction variations. This may seem
to be a lot at first glance, but consider
the following.

If the microprocessor has two reg-
isters from which to move and ma-
nipulate data, those two registers
require 1 bit for encoding the op
code. If four different addressing
modes are offered for accessing mem-
ory data, these require 2 more bits for
encoding. This leaves the micropro-
cessor with only 5 bits with which to
encode the operation to be per-
formed. Only 32 different operations
can be performed.

Now admittedly this is plenty of
operations for most applications, but
realize that only two data registers
and four memory-addressing modes
are not very many to someone doing
serious programming. Registers are
there for fast data manipulation, and
constantly swapping the contents of
too few registers is not very fast. A
more powerful microprocessor would
have many registers, and they would
all have to be accessible by the
different operations.

Additionally, the more addressing
modes you have for accessing mem-
ory data, the more efficiently you can
get values in memory. Obviously, 8
bits of op code cannot give the micro-
processor both the variety and the
number of operations that a good
16-bit microprocessor can. With
64,000 different instructions possible
in a 16-bit op code, you can perform
far more complex operations.

This, then, is the real advantage of
16-bit over 8-bit microprocessors to
the programmer. A 16-bit micropro-
cessor will have twice the data-bus
width of the 8-bit version. This wider
bus allows twice as much information
to go in and out of the processor in
the same amount of time. This can,
with proper internal design, almost
double the rate at which operations
take place over the rate of a similar
8-bit machine. Sixteen-bit micropro-

MC68010

Motorola has recently developed an
improved version of the MC68000: the
MC68010. It is completely compatible
with object codes of earlier versions of
the 68000 and has added virtual mem-
ory support and improved loop in-
struction execution.

By using virtual memory techniques,
the 68010 can appear to access up to 16
megabytes of memory when con-
siderably less physical memory is
available to a user. The physical mem-
ory can be accessed by the micropro-
cessor while a much larger "“virtual”
memory is maintained as an image on a
secondary storage device such as a
floppy disk. When the microprocessor
is instructed to access a location in the
virtual memory that is not within the
physical memory (referred to as a page
fault), the access is suspended while the
location and data are retrieved from
the floppy disk and placed into
physical memory. Then the suspended
access is completed. The 68010
provides hardware support for virtual
memory with the ability to suspend an
instruction when a page fault is
detected and then to complete the
instruction after physical memory has
been updated.

The MC68010 uses instruction con-
tinuation rather than instruction
restart to support virtual memory.
When a page fault occurs, the micro-
processor stores its internal state on the
supervisor stack. When the page fault
has been repaired, the previous
internal state is reloaded into the
microprocessor, and it continues with
the suspended instruction. Instruction
continuation has the additional ad-
vantage of handling hardware support
for virtual I/0 devices.

As mentioned in the body of this
article, the 68000 uses a prefetch queue
to improve the speed of instruction
execution. The 68010 goes one step
further by making the prefetch queue
more intelligent. Detection of a three-
word looping instruction will put the
microprocessor into a special mode. In
this loop mode, the microprocessor
will need only to make data transfers
on the bus, because it latches up the
queue and executes the instruction
repeatedly out of the queue. Once the
termination condition for the loop is
reached, normal operation of the pre-
fetch queue is resumed. This operation
is invisible to the programmer and
provides - efficient execution of
program loops.

cessors should give the programmer
far greater flexibility in coding and
perform similar operations in less
than half the time of an 8-bit micro-
processor.

Memory Accessing

Users of the 8-bit microprocessors
originally had difficulty imagining
what kind of programs could fill up
64K bytes of memory. Many systems
had no more than 8K bytes of ROM
(read-only memory) and RAM (ran-
dom-access read/write memory). But
as time went on and the general
software base grew, systems with up
to 64K bytes of memory became more
prevalent. Either code had to become
more efficient or ways of fitting more
than 64K bytes of memory in a sys-
tem had to be developed. Sixteen-bit
microprocessors could make code
more efficient.

In planning MACSS, designers
foresaw that the 16-bit, 64K-byte ad-
dressing range of popular 8-bit micro-

processors would be quickly out-
grown by the newly proposed micro-
processor. Each additional bit of
address could double the addressing
range of the processor.

Look at the techniques of expand-
ing beyond a 16-bit addressing range
and analyze the design trade-offs (see
figure 3). You could extend the
addressing range of early computers
and minicomputers simply by ap-
pending some additional bits to the
most significant of the 16 address
bits. These additional bits were
usually stored in an additional
register, the page register. This
method is called paging, because you
work out of one page at a time. The
page is set manually, and the lower
16-bits of address are included in the
instruction stream or registers.

Paging has the advantage of being
quite simple to implement in the
processor. No real circuit change is
needed over the straightforward
16-bit addressing, because all the

LINEAR
FFFFFFFF

00000000

PAGED
(PAGE REGISTER)
(ADDRESS REGISTER)

FF:FFFF
FF:0000

01: 0000

00: 0000

SEGMENTED
(SEGMENT REGISTER):
(ADDRESS REGISTER)

ARE ADDED
-~ -~
2C:FFFF
2C:0000
XXX
AS5:FFFF
A5:0000

Figure 3: Three methods of addressing
memory. The Linear method arranges a
contiguous memory area. The Paged
method organizes memory into blocks or
pages of a prescribed length. The
Segmented method gives each user or
program a specific area in memory. Both
the Paged and the Segmented method
give the programmer access to only a
small portion of memory.

expansion is done simply by append-
ing bits to the core. It also has the
advantage of having fairly dense
code, because only 16 bits of address
are carried around in the instructions.

However, there are many dis-
advantages to paging. The program-
mer is limited to accessing only the
particular page of memory that
happens to be set in the page register.
To be assured that the right page is
being used requires a check to see
what is currently in the page register,
possibly saving that page number,
and loading the register with the
desired page number. This takes time
and requires both additional thought
by the programmer and additional

code in the software. This additional
code typically takes up the room
saved by carrying around only 16 bits
of address.

One way to get around the single-
page limitation of paging is to
provide many page registers. Other
characteristics that determine which
register will be active on a particular
bus cycle include instruction fetch,
data read/write, and stack access.
While these additional registers give
the programmer access to more than
one page at a time, there is still only
one page available for each type of
access.

Some extensions to paging came
out to compensate for some of the
losses .experienced in paging.
Segmentation, for example, follows
the same general principles of
pagination. The key difference in
segmentation is that the page number
becomes a segment number and the
segment number is essentially added
to the core 16-bit address. This allows
some relocation of the core address
but still forces the programmer to
check that the desired segment is
loaded, and limits the range of any
segment to only 64K bytes of
memory.

To a programmer, the simplest
address technique is a direct address-
ing of any memory location. This
would be without regard for whether
the wanted data is near recently
accessed data or whether it is miles
away. The programmer wants a
linear view of data, that is, the ability
to specify a very simple, albeit long,
address that will access any data.

Now, beyond the processor’s mem-
ory-addressing method, memory
management is sometimes used. With
it more sophisticated systems dynam-
ically relocate or control the various
blocks of memory. This is done for
protection purposes in larger systems.
The advantage is that you can protect
one user's work space from the de-
vastating effects of another user’s
poor programs running amuck. To
this end, a separate memory manage-
ment unit (MMU), in conjunction
with the operating system, performs
some addition to or translation of an
address. This technique may sound

similar to paging and segmenting
memory, but this is done to serve a
completely different purpose, and in
a different way. The application
program writer never sees this
memory management and writes
code as though the entire memory
were available.

To expand the memory space on
the MACSS, the best option, though
not the easiest to implement on the
chip, is a linear address space. This
space is not broken up by paging,
segmentation, or banking schemes. It
is a very simple addressing technique,
requiring the least effort by the
programmer, while still allowing
more advanced operations such as
memory management.

A linear address is simply a
straightforward 32-bit, for example,
address. The address space is not
broken up into blocks; and it is
contiguous. Accessing such an
address merely requires the
expression of the 32-bits in the
instruction or using a single address
register. For convenience, if the upper
16 bits of the address are either all Os
or all 1s, then a shorter, 16-bit form
of the address can be sign-extended to
automatically provide the correct
address. This is the way the MC68000
accesses memory and 1/0.

How big an address space should a
16-bit microprocessor address? The
natural address sizes greater than
16 bits are 24 and 32 bits, which are 3
and 4 bytes long, respectively. For a
16-bit microprocessor, the odd num-
ber of bytes becomes slightly un-
wieldy. Looking a little further into
the future, it seemed that even the 16
megabytes of a 24-bit address might
not meet the needs of large systems.

While 32 bits of address, reaching 4
gigabytes of memory, seems tremen-
dous, once the need for more than 16
bits is established, 32 bits is the next
most convenient size. It takes exactly
two 16-bit bus transfers to move an
address into the processor, and once
the second transfer is needed, as it
would be even for an 18-bit address,
it is just as well to use the whole 16
bits brought in. Thus, engineers
selected a virtual-memory address
space of 32 bits for the MC68000.

Now, from a practical packaging
standpoint, 32 address signal lines are
quite a few. The placement of inte-
grated circuits (ICs) in dual inline
packages (DIPs) with greater than 40
leads was rare before 1980. With only
a few systems in the early '80s requir-
ing more than 16 megabytes of mem-
ory, it seemed a reasonable trade-off
to bring only the 24 least significant
address bits to the outside world.
That way fewer pins would be
required, and MACSS could fit with-
in a 64-pin DIP. Still, all 32 bits of
address are maintained within the
processor, and there are simple means
of determining the upper 8 bits’
values.

Multiple Registers

With the size of the memory
address space determined, it was
easier to settle on the register scheme
of the new processor. The size and the
number of registers had to be de-
cided.

Designers originally envisioned
onboard registers for a processor
because operating on memory data
requires a time-consuming transfer
across the external bus. It just
happens that in programming most
data is operated on a number of times
in succession before a result is ob-
tained. Often many combinations
with many different data pieces are
used. The merging of these two
observations leads to onboard or on-
chip registers for fast manipulation of
frequently used data.

It seems that from the day registers
were brought into the processor,
programmers have wanted more
registers for their use. The goal, then,
when designing processors, is to
provide as many registers as possible
for the programmer. In the MC6800,
only two registers (A and B) were
available for data manipulation, and
one index register (X) to point to non-
stack data. These few registers are
being loaded and saved almost as
often as the data within them is ma-
nipulated.

The loading and saving of registers
is usually wasted time. The amount
of time spent bringing data into on-
chip registers for fast manipulation

L

depends upon the exact use of that
data. However, the more registers
available, the more likely it is that a
register will not have to be saved just
so that some other data can be
operated on in that register.

The design of the internal execution
of instructions through a micropro-
cessor will determine many things
about the suitability of the chip for
programming. Instructions may
operate either on what are called
dedicated registers or on a general
register set. Each of these methods
has advantages and disadvantages.

In a microprocessor that uses dedi-
cated registers, an instruction in-
cludes the address of the data to be
worked on in specific registers. These
registers are inherent in the instruc-
tion. The ADD instruction, for
example, will add only from a mem-
ory location to, say, register A—not
to register B, and not from register A
to memory. If the value to be added
to is not already in register A, it must
first be placed there. Before it can be
placed there, a number in A may
have to be saved. All of this can be
quite troublesome. This is not very
different from the situation in which
there simply are not enough registers.

Contrast this with the example of a
processor that uses true general-pur-
pose registers. In a general-register
machine, the ADD instruction may
add data from memory to any of the
internal registers. The instruction
must contain information on which
register it will operate on. This is
determined when the instruction is
assembled. If there were four registers
in the processor, the ADD operation
could be performed in register A, B,
C, or D, as selected by the
programmer.

Now if the value to be added to is
in register C, the programmer simply
designates C as the operand register.
There is no need to shuffle registers
and no need to save any register
contents. The general-register
machine, then, is easier to program
and typically requires less time to
execute an operation.

As it always happens, this ease of
programming does not come free.
You will see later that allowing a

selection of registers requires bits in
the op code for encoding and, there-
fore, more bits of the op code. Also,
it is typically more difficult for the
microprocessor designer to imple-
ment the circuitry that incorporates
various registers because it takes time
to determine which register is to be
used and to activate that register.
Streamlining internal operations so
that this time is not detectable
requires quite a bit of planning.

So while fewer registers or dedi-
cated registers may be easier for the
microprocessor designer to imple-
ment, they make programming the
new chip more cumbersome and less
flexible. But the extra time, effort,
and expense of implementing general-
register principles pays off by easing
the programming of these devices.

Therefore, the MC68000 was de-
signed with general-purpose registers.
Any instruction may select any reg-
ister for use as a source or destination
operand or as a pointer in any allow-
able addressing mode. This tremen-
dous flexibility gives programmers
the ultimate in data and pointer
placement.

A close observation of the use of
registers indicates they usually have
one of two purposes: they may retain
data for manipulation, or they may
contain an address that points to a
memory location. The use of a
register for each of these purposes is
quite different.

When data is moved into or out of
a register or is manipulated within the
register, all types of conditional
information from the operation are
important. Thus, you typically
would like all condition codes to be
properly set after a data operation.
This way these condition codes may
be used to branch or with other data
operations.

On the other hand, an address
might be placed in or taken from a
register, or modified by incrementing
or decrementing. Rarely is it impor-
tant whether a carry comes out of the
ALU or whether the result is negative
(i.e., has a 1 in the most significant
bit). In fact, a programmer would
prefer manipulation of an address to
have no effect on the condition codes.

Often in the middle of a complex data
operation, you must bring in a new
address or increment an address. To
have this operation modify the
condition codes most of the time will
foul up the data operation in
progress, and so is undesirable.

Therefore, two generic register
types emerge: a data register (DO
through D7) and an address register
(AO through A7). The MC68000 has
both types. In a data register, any
operation will affect the condition
codes of the microprocessor as is
appropriate for the operation and the
data used. However, in an address-
register operation, condition codes
will not be changed, but the codes
from previous data operations will be
retained. This way you can have
address and index pointer changes
made, without affecting the accuracy
of the results, in the middle of a
complex data operation that requires
many instructions and transfers from
memory.

What size and how many of each
type of register should be included in
the microprocessor? The more reg-
isters there are, the better it is for the
programmer. Unfortunately, the
more register and control circuits in
the chip, the more expensive it is. A
good balance must be attained.

Two registers are too few, four are
nice, but it is difficult to imagine even
a complex routine requiring more
than eight different memory pointers.
The encoding of eight registers re-
quires an even three bits. Because it
seemed that eight was a good upper
bound, the MC68000 has eight ad-
dress registers and also eight data
registers.

With 16 registers available, divided
half and half for data and address,
almost any sizable routine will never
require the temporary storing of a
value in a register just so that the
register can be used for something
else. And, within the routine, manip-
ulations of memory pointers in
address registers will not interfere
with an ongoing data calculation,
because of the distinction of how the
condition codes work for the different
register types. It is easy to see how the
MC68000 is easier to program.

Earlier I explained that MACSS
would handle all of its addresses as
32-bit quantities. Anyone who has
ever programmed 8-bit micropro-
cessors, which have 8-bit accumula-
tors and 16-bit index registers, has
seen the difficulty with the two
different sizes. Once programmers
figure out how to put the 16-bit value
in both 8-bit accumulators, things get
tougher when they try to get arith-
metic carries from the lower half to
the upper half of the value.

A little of this experience led the
MC68000 designers to decide that
using data that is the same size as the
address register could make some
software design significantly easier.
In order to handle a linear 32-bit
virtual-address space, the MC68000
needed to have 32-bit address regis-
ters. How would 32-bit data registers
fit into a 16-bit microprocessor?

You would expect a 16-bit micro-
processor to process 8- and 16-bit
data, but does it make sense for it to
also process 32-bit data? Obviously,
the addresses will have to be handled
in that size. Designers recognized that
in 8-bit microprocessors the ability to
handle 16-bit data came in quite
handy for more advanced applica-
tions. The 8-bit processors soon had
to be upgraded to handle 16-bit
operands, and users of 16-bit mini-
computers needed 32-bit operations.

Once a few 32-bit operations be-
come necessary in a microprocessor,
you need a whole array of opera-
tions. If a multiplication operation
generates a 32-bit result, in order to
do anything with that result, other
32-bit operations are needed. For
consistency, again, Motorola decided
that the data registers would be 32
bits wide and operations on all 32 bits
could take place with a single
instruction.

Three Arithmetic Units

The exact manner of processing
data and addresses through the
MC68000 came about later, with
careful analysis of the internal
architecture and the need for address
and data in the sequence of instruc-
tions. The chip ended up with three
separate arithmetic units, which

could work in parallel. I'll describe
their purpose to give some insight
into how the machine works.

The MC68000 has a 16-bit-wide
ALU that essentially performs all data
calculations and provides single-pass
evaluation of the 16-bit data, for
which the MC68000 is primarily de-
signed. There are also two other inter-
nal arithmetic units. Both are 16 bits
wide and are generally used in con-
junction with each other to perform
the various address calculations asso-
ciated with operand effective ad-
dresses. This makes sense because all
addresses are 32 bits wide. An effec-
tive address (EA) is the calculated
result based on a selected addressing
mode of the processor. In the
MC6800, for instance, if an “index-
register-plus-offset” address mode
were used, the EA would be the result
of adding the contents of X with the
given offset. Because EA evaluation
takes time and can be a significant por-
tion of the instruction, it is important
to perform this quickly.

At one time, then, one 32-bit
address and one 16-bit data calcula-
tion can take place within the
MC68000. This speeds instruction
execution time considerably by pro-
cessing addresses and data in parallel.
The MC68000 also operates on 32-bit
data. This is usually done by taking
two passes of 16-bit data, one for the
lower word and one for the upper
word. This is reflected in the
execution time of many 16- and 32-bit
instructions.

Prefetch Queue

Another way designers made the
MACSS faster was to include what is
called a prefetch queue. This prefetch
queue is more intelligent than other
microprocessor queues; its control
varies according to the instruction
stream contents.

The prefetch queue is a very
effective means of increasing micro-
processor performance; it attempts to
have as much instruction information
as possible available before a
particular instruction begins execu-
tion. The microprocessor uses an
otherwise idle data bus to prefetch
from the instruction stream. This

keeps the bus active more of the time,
increasing performance because
processing of instructions is often
limited by the time it takes to get all
the relevant information into the
processor.

The part of memory from which in-
structions are fetched, the program
space, contains op codes and address-
ing information. The prefetch queue
can contain enough information to
execute one instruction, decode the
next instruction, and fetch the
following instruction from memory—
all at the same time.

Exactly what is in the queue is very
dependent upon the exact instruction
sequences. The queue is intelligent
enough to stay fairly full without
being too wasteful.

For instance, when a conditional
branching instruction is detected, the
prefetch is ready to either branch or
not by the time a decision is made.
The queue tries to fetch both the op
code following the branch instruction
and the op code at the calculated
branch location. Then, when the
condition codes are compared and a
decision is made whether to branch,
the processor can begin immediate
decoding of either instruction. The
other unnecessary op code is ignored.

You can use the prefetch queue in
many other special ways as well. One
example is in speeding up the re-
petitious Move Multiple Registers
instruction, where it is used to
accelerate successive data transfers.
The prefetch queue allows many fre-
quently used instructions to execute
in exactly the time it takes to fetch the
op code (actually, the time to prefetch
the next op code).

Microcoding

One other significant implementa-
tion feature from the MACSS project
emerged from the choice between a
random logic design versus a
microcoded design. Both techniques
have advantages and disadvantages.
Earlier microprocessors were largely
of random logic design. Advanced
techniques of very large scale inte-
gration (VLSI) and the increasing
complexity of the chips have made
microcoding more attractive.

Random logic design of a micro-
processor or other logic device is the
building of the device from discrete

components—gates, buffers, and
transistors. This limits the
components to those that are

essential. There are no unused gates,
duplicated circuits, or clever uses of
otherwise unused components. The
design is usually packed as tightly as
possible and is quite fast.

The difficulty is that, as the design
becomes more and more complex, as
VLSI has, the planning and layout of
the components and signal traces
become exponentially more difficult
and often impossibly so. This means
that it takes exorbitant amounts of
time to design the circuits.

Another problem with the use of
random logic in very complex circuits
occurs in modeling and testing.
Before such circuits are finally placed
in silicon, they must be modeled and
simulated on computers because of
the great difficulty in running down
bugs once the chip is in silicon
compared to debugging a wire-wrap
board. The entire circuit must be
modeled all at once to ensure that one
combination of signals affects only
the expected section of the device.

Similarly, once the circuit is in
silicon, the pass/fail testing of the
components in a random logic chip is
quite difficult. You typically have
only a few lines to send sequences of
patterns through for testing. Because
a particular section of the circuit may
be exercised only by a very few given
inputs, a normal test may not detect a
stuck gate or other error caused by
some strange combination of inputs.

On the other hand, in much the
same way that microprocessors made
designing systems with medium-scale
integration/large-scale integration
(MSI/LSI) easier, microprogramming
has come to ease the complications in
the design of microprocessors. Micro-
programming is to a microprocessor
what a microprocessor is to a logic
design of a system. A microprocessor
has central components that can be
considered black boxes with inputs
and outputs. For each given opera-
tion (instruction, interrupt condition,
etc.), the microprocessor can route

certain information to these black
boxes as inputs, and the outputs can
be routed to other components. The
control of this routing is performed
by a microcontroller or micro-
sequencer.

Similar to a microprocessor, the
microsequencer directs the flow of
data through the various components
(ALU, registers, condition flags,
shifters, buses, etc.) according to
microprogrammed instructions. Each
instruction has its own microroutine,
or sequence of microwords, which
routes the associated data to the
proper component in the proper
order. Conditions and branches may
redirect the microroutines.

Microcoding a complex circuit
simplifies design mostly because it
makes the circuit modular. It takes a
controller, a block of microprogram,
and the components through which
data is to flow. Each of these elements
may be modeled, built, and tested
with individual inputs and outputs.
Microcoding is a big step toward
simplifying the design process
because it breaks up the design into
manageable blocks, thereby easing
the testing of the finished product.

Another advantage of microcoding
is that it allows tremendous flexibility
in the exact operation of the circuit.
Its microwords allow more combina-
tions of the inputs through the
components than most random logic
would allow. Microcoding’s pro-
grammability makes it especially
attractive to silicon designers because
random logic in silicon is not easily
changed.

Last-Minute Changes Possible
You can change the microROM of

the microcoded device right up to the
minute before the masks for the
device are processed. To change a
small facet of an operation may
mean altering a few bits in the
microROM, but this changes only
whether or not there is a gate on the
bit's transistor—a simple alteration.
Similarly, after the silicon is cast,
should a change be necessary, it will
likely be just a microcode change,
which would be much easier than
random logic modification in silicon.

The disadvantage of a microcoded
circuit lies primarily in its generality.
Because it is made up of modules and
is programmed, the microcoded cir-
cuit is more wasteful of transistors
and therefore makes a larger circuit.
This may add up to 20 percent more
board space or chip area than a tight
random logic design. But microcod-
ing has advantages that make up
for this disadvantage, making it the
design choice for modern VLSI cir-
cuits.

There are two types of micropro-
gramming, horizontal and vertical
(see figure 4). Horizontal microcod-
ing is the more direct form. It is
unencoded, so that, for instance, 1 bit
in each microword would enable each
register. For 16 registers, then, 16 bits
of microcode must be dedicated.
Horizontal microwords tend to be
quite long, and because the size of the
microcode directly affects chip size,
they can quickly increase chip cost.

A denser but slower form of
microcoding is vertical microcoding.
Here, control functions are encoded,
so that only 4 bits of microcode are
required to select one of 16 registers.
While it needs a much shorter micro-
word, vertical microprogramming is

VERTICAL MICROWORD

I
1
1

I
1

I
1
1

ENCODED "REGISTER 4" WITH ENABLE BIT

HORIZONTAL MICROWORD

I I I
0 0
1 | 1

T
1

~
8

| I)

0 0
1 1 1

L
L

UNENCODED "REGISTER 4"

Figure 4:

Comparison of horizontal and vertical microcode patterns.

potentially slower than horizontal
microprogramming. Vertical micro-
programming will take at least one
level of logic gates to decode the
encoded signals. This level of gates
may just throw the total gate
propagation delay over the threshold
of the clock pickets, forcing an
additional clock cycle into the in-
struction.

In the MACSS project, the
MC68000 was selected to be micro-
coded. In retrospect this was a very
wise decision. The first silicon
prototype worked well enough so
that the major circuits in the device
could be tested, and subsequent
“fixes” were often just microcode
corrections. The instruction set was
not firm until just before the masks
went to wafer fabrication, allowing
some late decisions to be made to
improve the performancé of the chip.

A combination of horizontal and
vertical microcoding was used on the
MC68000 to gain the optimum
advantages of both. Essentially, a

microcode and a nanocode were
developed. The microcode is a series
of pointers into assorted microsub-
routines in the nanocode. The nano-
code performs the actual routing and
selecting of registers and functions,
and directs results. This combination
is quite efficient because a great deal
of code can share many common
routines and yet retain the
individuality required of different
instructions.

Decoding of an instruction’s op
code generates starting addresses in
the microcode for the type of
operation and the addressing mode.
Completion of an instruction enables
interrupts to be accepted or allows
access to the prefetch queue for the
next op code. The prefetch queue
actually keeps bus use at 85 to 95
percent, i.e., the bus is idle only 5 to
15 percent of the time!

Conclusion
Let's look back now at the
MC68000 and see what parts of it

might qualify it as a 16-bit device.
The internal data ALU is 16 bits. It
processes 32-bit addresses, though
only 24 bits are brought off chip. The
op code that tells the processor what
operation to perform is 16 bits wide.
The data bus is 16 bits wide. The
microprocessor will operate on
either 8, 16, or 32 bits of data auto-
matically. There are 16 general-
purpose 32-bit-wide registers in the
chip.

The MC68000 is generally con-
sidered a 16-bit microprocessor,
though it uses 32-bit addresses and
contains 32-bit registers. It also can
operate on 32 bits of data as easily as
8 and 16. Many users of the MC68000
consider it a 32-bit just as much as a
16-bit processor. Whatever you
consider it there is no doubt that the
MC68000 is indeed a powerful micro-
processor. In coming articles, I will
discuss in more detail exactly what
operations are available in the
MC68000 and will illustrate examples
of MC68000 code.m

Design Philosophy Behind
Motorola’s MC68000

Part 2: Data-movement, arithmetic, and logic instructions

Last month, in part 1, I discussed
the design philosophy behind the
Motorola MC68000, a powerful
16-bit processor with multiple 32-bit
registers. This month I'll describe the
data-movement, arithmetic, and logic
instructions of the MC68000. A
thorough reading of the MC68000’s
user’s guide (available from many
computer bookstores and Motorola
distributors) will give you all the
details of each instruction’s opera-
tion, but a look at the general cate-
gories of instructions, a discussion of
why certain design decisions were
made, and mention of some special
capabilities of the instructions will
give you insight into the power of this
instruction set.

Instruction Format
and Addressing Modes

Before I get into the instruction
groups, let’s first look at how assem-
bly-language instructions are written.
Table 1 illustrates a common instruc-
tion format and the choices that can be
made within it. First, of course, you
can pick one of several microprocessor

About the Author

Thomas Stames is an electrical engineer who
has spent the last five years helping to plan the
direction of the MC68000 family of processor
products for Motorola.

Thomas W. Starnes
Motorola Inc., Microprocessor Division
3501 Ed Bluestein Blvd.

Austin, TX 78721

instructions—for example, an addition
(ADD), comparison (CMP), arith-
metic shift left (ASL), or data move
(MOV). If the instruction is one that
handles data, you can, with the
MC68000, select one of three data
sizes: 8, 16, or 32 bits. This selection is
made by following the mnemonic with
a period and either a “B”, “W", or “L”",
for byte, word, or long word; if no
size is specified, the assembler will
assume a 16-bit operation.

On a data operation, you need to
make one or two more decisions, i.e.,
which addressing mode to use for the
one or two operands the instruction
requires. (See the text box on data
organization on page 354 for more
details.) Typically, you can select one
of 14 modes; within most of these
modes, one of eight address registers is
selected. On many operations, you
need to select a second addressing
mode; this usually involves selection
of one of eight data registers, but for
the data-movement instruction, any
addressing mode can be selected.

All MC68000 instructions are fully
defined with 16 bits of op code. (Op
code is short for operation code; it is
the pattern of bits that a micropro-
cessor interprets as a specific machine-
language instruction executable by it.)
Depending on the instruction or the
addressing mode(s) selected, addi-

tional 16-bit extension words may
follow the op code. These extension
words provide additional addressing
information and may make the total
instruction length as long as 10 bytes.
Because the instruction is always
lengthened by multiples of 16 bits, you
can ensure that instructions always
begin on even-byte boundaries;
because of the way the MC68000
fetches 16-bit quantities from mem-
ory, this placement of instructions in-
creases the speed of program execu-
tion.

By far, the most common operation
in any processor application is the
movement of data. Other micropro-
cessors move data with LOAD,
STORE, PUSH, PULL, POP, and in-
put/output (I/0O) instructions. When
you boil it all down, each instruction
simply moves data from one location
to another. So why not call them all
MOVE? Simplicity of expression is a
fundamental theme throughout the
MC68000’s instruction set: all similar
operations should perform similarly in
a number of respects. For example, if
you can use an ADD operation with
two 32-bit quantities, you should be
able to use an add-with-carry opera-
tion with two 32-bit quantities. If you
can select from 14 addressing modes to
use an ADD operation, you should be
able to select from 14 addressing

A1l
DECODE

O —————

IRD BUS

ADDRESS HIGH | ADDRESS LOW
EXECUTION UNIT | EXECUTION UNIT

Photo 1: The MC68000 microprocessor chip, which contains more than 68,000 transistors, is 246 by 281 mils (6.24 by 7.14 mm) in
size. This photo shows the location of the major functions of the chip. “Int. Log.” stands for “Interrupt Logic"; “A0 Mux Control”,
for “Microcode A0 Multiplexer Control”; and “FC Log.”, for “Function Code Logic.” The labels “uROM" and "NROM" indicate two
areas of microcode. “Trap and Ill. Inst. PLA" stands for “Trap and lllegal Instruction Programmable Logic Array”; “IRD Reg.", for
“Instruction Register Decode Register”; and “ALU Control”, for “Arithmetic and Logic Unit Control.” The Data Execution Unit
houses the main functions of the arithmetic and logic unit, while the two Address Execution Units perform the arithmetic associated
with the calculation of an address.

A4
S

Instruction format is:
mnemonic.size

Explanations:

source,destination

Examples:
ADD.L D1,D2
MOVE.B #15,— 1(A0)
ADD D1,D2
BGE LOOP1
RTS

mnemonic = instruction abbreviation (ADD, CMP, MULS, etc.)
size (optional) = operand size:

.B means byte data (8 bits)

.W means word data (16 bits; default size)

.L. means long word data (32 bits)
source (optional) = source operand addressing mode
destination (optional) = destination operand addressing mode

Table 1: General format for MC68000 instructions.

.

(size assumed to be “.W")
(only one argument)
(no arguments)

modes to use SUB (subtract). If certain
status register codes are modified to
reflect the results of an ADD, the same
codes should also be modified when a
SUB or NEG (negate) instruction is
performed.

Varieties of MOVEs

With this philosophy in mind, all of
the old LOAD, STORE, PUSH, PULL,
POP, and 1/0 instructions from other

microprocessors were rolled into one
very powerful and flexible MOVE in-
struction in the MC68000. Let’s look at
just what this one instruction can do.

The MOVE instruction can move
8-, 16-, or 32-bit data from practically
any location to practically any other.
And a wide selection of addressing
modes and registers for both the
source and the destination should
cover about any way you want to find

the operands. Table 2 lists the different
combinations of addressing modes
available on both the MC68000 and
the Intel 8086 families. Let's look at
what some of the MC68000 address-
ing-mode combinations allow you to
do.

Certainly, you can copy data be-
tween registers, but you can also copy
data to or from a register to memory
using any of the memory-addressing
modes. Most microprocessors allow
the programmer to transfer data on
the top of a stack to or from a regis-
ter only. What if the data is really
needed elsewhere in memory? You
must run a second instruction to make
the second move and use a register for
a temporary holding space. The
MC68000 allows you to move top-of-
stack data to or from any register,
another stack, a queue, any memory
location, or any I/O location, all in
one smooth motion. And why
shouldn’t you be able to? An added
advantage of the MC68000 comes
from its ability to use any one of the
eight address registers as a stack
pointer; this allows you to build as
many as eight different stacks without
having to swap out registers.

You can also do direct memory-to-
memory moves. There are 10 different

destination Dn An (An) (An) + —(An) d16(An) d8(An,Xn) Abs.W Abs.L

#options 8 8 8 8 8 8 128 N/A N/A
source #options
Dn 8 Mi M Ml M M Ml Ml Ml M
An 8 MI MI Ml M M Ml MI Mi M
(An) 8 Ml MI Ml M M M M M M
(An)+ 8 M M M M M M M M M
-(An) 8 M M M M M M M M M
d16(An) 8 Ml Mi M M M M M M M
d8(An,Xn 128 MI MI M M M M M M M
Abs.W N/A MI MI M M M M M M M
Abs.L N/A M M M M M M M M M
d16 (PC) 1 M M M M M M M M M
d8 (PC,Xn) 16 M M M M M M M M M
Immediate 1 M M M M M M M M M

Notes:
1. “M" means this combination available on the Motorola MC68000.
“I"” means a comparable combination available on the Intel 8086 family.

2. “#options” refers to the number of different ways an addressing mode can be used in the MC68000 due to the availability of multiple
registers that can be used; for example, the *‘d8(An,Xn)"" option can use 8 An registers and 16 Xn registers for a total of 128
combinations. ‘*‘N/A’” means ‘‘not applicable.”

3. Most of the source and destination addressing modes are explained in the text box ‘‘Data Organization and Addressing Modes,"
page 354. “An” and “‘Dn" are register addressing modes. ‘‘Abs.W"" and ‘‘Abs.L" are word-address and long-word-address
forms of absolute addressing.

Table 2: Addressing modes available to the Motorola MC68000 and the Intel 8086. The information at the intersection of a row
and a column indicates the availability of that source/destination addressing-mode combination for each microprocessor.

LONG TRANSFER TO/FROM AN EVEN ADDRESS.

31 24 23 16 15 87 0

REGISTER: HIGH-ORDER MID-UPPER MID-LOWER LOW-ORDER
BYTE BYTE

ADDRESS 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O ADDRESS

MEMORY 2N HIGH-ORDER 2N+1
2N+2 MID-UPPER 2N+3
2N+4 MID-LOWER 2N+5
2N+6 LOW-ORDER 2N+7

Figure 1: Moving data from a 32-bit register to memory using the MOVEP instruction.
Bytes from the register are stored in every other memory byte. The instruction takes 24

clock cycles to execute.

memory-addressing modes to select
from for the source operand and seven
for the destination. Also, keep in mind
that each addressing mode can use any
of the eight address registers, further
increasing the versatility of these move
instructions. (Actually, in one mode,
you have 16 registers to choose
from—eight address and eight data
registers.)

Just how many different ways are
there to move general data in the
MC680007 When you couple all of
the combinations allowed with the
selection of registers available, there
are 34,888 different ways, and each
one can be used for 8-, 16-, or 32-bit
data. That ought to solve most pro-
grammers’ data-shuffling problems!

The remaining data-movement in-
structions include SWAP, for in-
stance, which exchanges the contents
of any two data and/or address reg-
isters. You can read or modify the
status register codes with a MOVE SR
(Status Register) instruction.

The MC68000 was designed to in-
terface directly to the MC6800 line of
8-bit peripherals so that all the exist-
ing peripheral circuits could easily be
used on the MC68000. (Many of the
8-bit peripherals provide very useful
functions that would need to be in-
cluded in a 16-bit system.) To bring
the best of the 8-bit peripheral world
into the universe of 16-bit software,
designers included a special MOVEP
(Move Peripheral) instruction in the
MC68000. Here's how and why it
works.

Frequently, you must set up reg-
isters to ready a peripheral for opera-
tion. You need to connect an 8-bit
peripheral to either the upper or
lower half of the 16-bit-wide data
bus. This means that the registers
connected to a peripheral appear
within the MC68000 memory address
space as successive-even or succes-
sive-odd addresses. The MOVEP in-
struction will move either 16 or 32
bits of a given data register out to
memory in 8-bit chunks, starting at a
given location (see figure 1); ad-
dresses for each successive byte are
incremented by two, not by the one
that the normal MOVE uses. This
allows the 2 or 4 bytes being trans-
ferred to be loaded into the proper pe-
ripheral port addresses. Thus, you
can load as many as four 8-bit reg-
isters in one simple instruction. The
MOVEP instruction is bidirectional,
so that the registers can be either
loaded or read.

Two special types of the MOVE in-
struction are the MOVEQ (Move
Quick) and the MOVEM (Move
Multiple Register). Often a register is
used as a counter or a constant, with
values that are typically rather small.
The MOVEQ instruction makes it
fast and easy to initialize a register to
such values. MOVEQ will take any
signed 8-bit immediate value between
—128 and 127, extend its sign bit so
that it will be correctly interpreted as
a 32-bit number, and load it into one
of the data registers. The op code for
MOVEQ includes the 8-bit immediate

value; this means the microprocessor
can perform the operation very
quickly. Because the small immediate
value is part of the MOVEQ op code
itself, the instruction is classified as a
separate addressing mode of the
MCé68000 called the “quick im-
mediate” addressing mode.

It is common in machine-language
programming to have to save the con-
tents of various on-chip registers, use
the registers for some other purpose,
and then restore their former con-
tents. This happens when you are
beginning or ending a subroutine, ex-
ecuting an interrupt handler, chang-
ing tasks, or calling the operating sys-
tem. The MC68000 has a very handy
instruction that makes this a fast, effi-
cient operation. The MOVEM in-
struction will take any combination
(or all) of the 16 data and address reg-
isters and move them either to or
from memory in an organized man-
ner. These registers can be transferred
to or from any stack or to a specific
location in memory. They are put in
memory and taken from memory in
reverse order to ensure that each reg-
ister receives its proper contents. An
option of the MOVEM instruction is
that either the lower 16 bits of the reg-
isters or the entire 32-bit registers can
be transferred. An example of this in-
struction is:

MOVEM.L D0/D4-D7/A4/A5,40(A6)

which would save the registers as
shown in figure 2. (The instruction
will save registers DO, D4 through
D7, A4, and A5 into memory starting
at the location pointed to by the value
in register A6 plus the value 28 hexa-
decimal.) The list of registers to be
transferred is compactly encoded in a
16-bit value that follows the MOVEM
op-code word—an “on” bit indicates
the associated register is to be trans-
ferred. Not only is the MOVEM in-
struction both compact and useful, it
is also as fast as possible for the num-
ber of bytes of information that must
be transferred.

Orthogonality

Arithmetic operations are key in-
structions in a microprocessor
because they tend to be the ones that

\

REGISTER A6 0o 0 9 1 C¢C 0 0 O

CONTENTS OF A6 91C000
+ DISPLACEMENT + 28

STARTING ADDRESS 91C028

ADDRESS MEMORY
(HEXADECIMAL) (ORGANIZED
AS WORDS)
91C028 DO-HIGH
2A B DO-LOW 7]
2C D4-HIGH
2E B D4-LOW 7
30 DS-HIGH
32 § DS-LOW 7
34 D6-HIGH
36 i D6-LOW 7]
38 D7-HIGH
3A B D7-LOwW 7]
3cC A4-HIGH
3E i Ad-LOW 7]
40 AS5-HIGH
91C042 B AS-LOW 7

Figure 2: Pushing multiple registers to memory with the MOVEM instruction. This in-
struction offers a very fast way to store selected registers in memory and, later, restore
them properly. This figure shows the storage of registers DO, D4 through D7, A4, and
A5 to location 91C028 hexadecimal. The instruction itself is MOVEM.L DO0/D4-
D7/A4/A5,40(A6). (Remember that 40 decimal equals 28 hexadecimal.) The instruction

takes 58 clock cycles to execute.

do the bulk of the work. The arith-
metic and logic instructions allow
programmers to write code exactly as
they desire without having to re-
arrange data, gather more data, or do
things in an unnatural order. As with
so many other characteristics of the
MC68000, the design of the arith-
metic and logic instructions is very
orthogonal—more so than for any
previous microprocessor. Orthogon-
ality can be defined as the ability of
any allowed operation to use any re-
source in any way that any other
operation may.

The arithmetic and logic instruc-
tions are very similar in the way they
function, the way the condition codes
are affected as a result, and the selec-
tion of addressing modes, registers,
and operands available to them. The
advantage of this is that, when cod-
ing, the programmer has only one
uniform set of rules to remember.
Older microprocessor designs forced
programmers to have different sets of
rules for even similar instructions,
which decreased programmers’ pro-
ductivity by forcing them to recall
and use correctly large amounts of
essentially arbitrary information.

All of the dual-operand arithmetic
instructions are true “one-and-a-half”

address operations (i.e., one operand
can be specified as a memory address,
but the other must be an internal reg-
ister—the result overwrites one
operand). Thus, you can add any reg-
ister to any register, a constant to any
register, the top of a stack to any reg-
ister, a value buried in a stack to any
register, a table entry to any register,
an input from an I/0O device to any
register, or any memory location to
any register. Or, because the order
may be reversed, you can add any
register to any of the same (except
that you can't add to a constant, and
you can’t use the program-counter
relative addressing mode to specify a
destination). Also, remember that
any of these instructions can occur
with 8-, 16-, or 32-bit data.

Arithmetic Instructions

Let's look at the types of arithmetic
instructions that are available. Add
(ADD), subtract (SUB), and compare
(CMP) instructions are general two-
operand instructions. ADDX and
SUBX are used to work on numbers
longer than 32 bits (the X condition
bit in the MC68000 performs a func-
tion similar to the one the carry bit
performs in most microprocessors).
Two multiply and divide instructions

are available: signed (MULS and
DIVS) for single-precision instructions
and unsigned (MULU and DIVU) for
multiple-precision instructions.

The negate (NEG) and clear (CLR)
instructions require only a single
operand, and you can use a NEGX to
negate multiple-precision values. To
blend mixed sizes of data, the
MC68000 provides a sign-extend in-
struction (EXT), while a TST (test) in-
struction is used to check for positive,
negative, or zero conditions. A
special instruction, the indivisible
test-and-set (TAS), provides software
synchronization in multimicropro-
cessor operations.

One variation on the ADD instruc-
tion enables the MC68000 to over-
come a common limitation of other
microprocessors. The normal “one-
and-a-half” address design of most
processors makes it difficult to use
constant (immediate) values with
anything but registers. The MC68000
overcomes this with the ADDI in-
struction, which allows a byte, word,
or long-word immediate value to also
be added to an operand in memory
using any legal destination-memory
addressing mode.

The MC68000 has no increment or
decrement instructions. Why? Re-
member, the idea is to treat all similar
instructions the same. An increment
instruction adds 1 to a quantity and is
often used to step to the next element
in a table of byte-wide values. But the
MC68000 programmer will often be
manipulating 16- and 32-bit data,
which require increments of 2 and 4,
respectively, to the table address. The
design team wanted to generalize the
increment and decrement instructions
to make them useful with all data
sizes yet still retain the speed
associated with an instruction that
does not have to fetch an immediate
argument. To solve these problems,
and then some, the designers gave the
MC68000 “add quick” (ADDQ) and
“subtract quick” (SUBQ) instruc-
tions, which allow any number from
1 to 8 to be added to or subtracted
from any register or any memory
location. The instructions accomplish
this in the shortest possible time by
using 3 bits within the 16-bit op code
to hold the increment or decrement

MC68000 STATUS REGISTER

SYSTEM BYTE USER BYTE
r — N7 Y
15 13 0 8 7 s 0
7 7
T s 1[4 | / x|nfz]|v]e
7

TRACE MODE _-—I

SUPERVISORY

INTERRUPT
MASK

EXTEND

NEGATIVE

ZERO

OVERFLOW

CARRY

Figure 3: The bits of the MC68000 status register (SR).

amount (in this scheme, the bits 000
indicate an operand value of 8, not
0). Then, not only can you quickly
and easily change an address pointer
by 1, 2, or 4 for 8-, 16-, or 32-bit
data, but you can also change
counters by 3, 5, 6, 7, or 8. And the
effect is identical to that using the
standard ADDI instruction—even the
status register codes are all the same.

Some odds and ends of arithmetic
instructions include sign-extend
(EXT), clear (CLR), and test (TST) in-
structions. Since three different sizes
of data-can be used in the MC68000,
there should be a convenient way of
changing size. If you want to move
only part of a datum (for example,
the bottom 16 bits of a 32-bit
register), you need only use a MOVE
instruction of the proper data size. If,
however, you want to convert a
datum to a larger-sized two's-comple-
ment value (for example, making a
16-bit value into a 32-bit expression),
you need a special instruction. The
EXT instruction will take an 8-bit or a
16-bit datum and duplicate its upper-
most bit position through the higher
portions of any data register in order
to convert the datum to 16 or 32 bits
wide, respectively. CLR simply loads
a set of Os into the destination. TST
sets the negative and zero condition
bits (discussed in the next section) ac-
cording to the nature of the given
operand.

Status Register Codes and
Multiple-Precision Arithmetic

What if you are dealing with
binary integers that require more
than 32 bits for expression? Say you
want to add two 128-bit (16-byte)
numbers. If both of these numbers
were in the MC68000 registers, all
eight data registers would be in use.
More likely, the two values would be
in 16 consecutive bytes of memory,
starting with the most significant byte
of data. The normal procedure to add
two such numbers is to add the two
least significant bytes, remember the
carry, go to the previous bytes and
add them, remember the carry, and
so on. This sequence of operations is
handled neatly in the MC68000 by
the predecrement address-register
deferred mode, which uses the nota-
tion “—(An)”. Use two address reg-
isters to point to the byte just past
each operand. Each execution of an
ADDX —(Am), —(An) instruction
will decrement the values in the Am
and An registers (m and n stand for
numbers between 0 and 7), then add
the two numbers pointed to by those
registers. By putting this single in-
struction in a loop, you can quickly
create the code needed to operate on
multiple-precision numbers.

Let’s detour for a second to discuss
the status register of the M68000 (see
figure 3). It contains the standard
carry (C), overflow (V), zero (Z), and

negative (N) bits found in other
microprocessors. It also has a status-
register bit not found on other micro-
processors, the X (or extend) bit. This
bit was created to eliminate confusion
caused by traditional overuse of the
carry bit.

To explain the extend bit, I should
describe the carry bit. In most micro-
processors, the carry bit is overused.
It is changed by (among other things)
an addition instruction, but it is used
in two different ways. Sometimes it is
used in a later addition, such as in
multiple-precision additions; some-
times a program tests the bit and
branches according to the carry bit’s
state. So programmers use the carry
bit for two different purposes: for
extended-precision arithmetic and for
program control.

The MC68000 has a bit for each
purpose. Both the carry and the ex-
tend bits are changed according to the
results of an addition instruction.
However, the carry bit is used by the
microprocessor during testing for
program control purposes, while the
extend bit is used as an input for
multiple-precision arithmetic opera-
tions. For ADD, SUB, NEG, and
specified shift and rotate instructions,
both the carry and extend bits are up-
dated. Other instructions—MOVE,
AND, OR, TST, CLR, MUL, and
DIV —change only the carry bit. This
design helps prevent inadvertent
changes to either bit.

Because of the extend bit, the
familiar “add with carry” operation
in the MC68000 becomes ADDX or
“add with extend bit.” Look at why
this is important. Once you start a
multiple-precision arithmetic opera-
tion and get a partial result, the in-
tegrity of the extend bit will be main-
tained even if you have to suspend
the addition to do some data move-
ment with the MOVE instruction.
Programming becomes easier because
you don't have to save the status
register codes when interrupting a
multiple-precision operation.

I should mention one other thing
about multiple-precision arithmetic.
When you have finished the multiple-
precision operation, what does the
negative bit mean? It correctly in-
dicates that the result was positive or

negative. In most microprocessors,
though, the zero bit indicates only
that the most significant portion of
the result is 0, not that the entire
result is 0. The multiple-precision
arithmetic instructions in the
MC68000 are designed so that the
zero bit will accurately depict the
status of the entire result. This is done
by allowing multiple-precision in-
structions to reset the zero bit (denot-
ing a nonzero result) but not to set it

(denoting a zero result). With this
scheme, the programmer’s only re-
sponsibility is to set the zero bit
before beginning the multiple-preci-
sion operation.

One final issue can come up in the
middle of arithmetic operations, and
the MC68000’s handling of the prob-
lem illustrates another fundamental
difference between it and so many
other microprocessors. How many
times have you interrupted a series of

arithmetic operations to modify some
memory pointers and later discovered
that your completed arithmetic oper-
ation gave a wrong result because
you inadvertently modified certain
status register code bits? When you
get right down to it, when you add 12
to a memory address, who cares if a
carry was generated or if the result
was negative? In fact, the negative bit
has no meaning in relation to ad-
dresses. We as programmers are hurt

by the senseless changing of status
register code bits when address-
related operations are run. Why don’t
we leave these bits alone when chang-
ing memory addresses?

As you can imagine, the designers
of the MC68000 have addressed: this
problem. One of the primary distinc-
tions between the data and address
registers in the MC68000 is that in-
structions with an address register as
the destination do not modify the

status register code bits. They are not
changed by moving a new pointer
value into an address register, in-
crementing or decrementing an ad-
dress register, or by adding any value
to an address register. This means
that you should never run into a prob-
lem with memory-pointer modifica-
tions affecting your ongoing data
arithmetic operations.

Another interesting note is that all
operations to any address register af-

fect the entire address register.
Because all MC68000 addresses are 32
bits wide, any operations with an ad-
dress register as destination must per-
form in a way that keeps the result
valid as a 32-bit address. One solu-
tion, to require all inputs to address-
register operations to be full 32-bit
quantities, would be wasteful of
memory space. So either word
(16-bit) or long-word (32-bit) opera-
tions may take place in any of the ad-

Instruction

ADD.B D6,D2

ADD.L 52(A1,D7.W),D6
ADD.W D3,(A7)

ADDL.L #$400,D1
ADDI.B #3$A9,$30B(A6)

ADDAW —(A5),A2

ADDA.W #100,A5
ADDQ.W #1,(Ad) +

ADDQ.B #3,D7
ADDX.L —(A2), —(A5)

“

Operation

adds the lower 8 bits of D6 to D2 (takes 4 clock cycles)

the effective address is the sum of the constant 52, the contents of register A1, and the
lower 16 bits of register D7; the long word at the effective address is added to the contents
of register D6 (20 clock cycles)
adds the lower 16 bits of D3 to the element on top of stack pointed to by A7 (12 clock
cycles)
adds 400 hexadecimal to the 32-bit contents of D1 (16 clock cycles)

the effective destination address is the sum of the 30B hexadecimal and the contents of
register A6; A9 hexadecimal is added to the byte at the effective address (20 clock cycles)
decrement register A5 by 2, then add the word pointed to by register A5 to register A2 (14
clock cycles)
add the value 100 to the contents of register A5 (12 clock cycles)

add 1 to the word pointed to by register A4, then increment register A4 by 2 (12 clock
cycles)

add 3 to the contents of register D7 (4 clock cycles)
after decrementing both registers A2 and A5 by 4, add together the X bit and the two long
words pointed to by A2 and A5 (30 clock cycles)

Table 3: Examples of MC68000 addition instructions. The clock times given are worst-case times for the instruction.

dress registers A0 through A7. If a
word operation is performed, the
16-bit quantity is first sign-extended
to 32 bits before it is used.

Processor Speed

How fast does the MC68000 ex-
ecute instructions? Because of the
consistency of the microprocessor,
the answer for addition instructions
will serve as a guide for all arithmetic
and logic instructions. A prefetching
mechanism in the MC68000 keeps de-
coded instructions waiting to be ex-
ecuted. So while the timing informa-
tion given refers only to the time it
takes to pass through the adder, recall
that the prefetcher will have fetched
the next op code while the current op
code is being executed.

The minimum time it takes the
MC68000 microprocessor to access
memory (to read or write) is 4 clock
cycles. With a clock frequency of 8
MHz (the frequency used in the stan-
dard MC68000 microprocessor), this
bus cycle will take 500 ns (nanosec-
onds). (All subsequent timings will be
given in clock cycles, which is a
meaningful measurement for all the
MC68000-family microprocessors,
regardless of the speed of their system
clocks—8, 10, or 12.5 MHz.) Every
instruction will take at least 4 clock
cycles to complete because this is the
time it takes to fetch the next op code.

The MC68000 has only one 16-bit

arithmetic and logic unit (ALU) for
data operations. Therefore, 8- or
16-bit operations can be performed in
a single pass through this unit; this
takes 4 clock cycles. A 32-bit opera-
tion will require a second pass. Mem-
ory-addressing modes increase the
time needed for an operation because
the microprocessor requires more
time to calculate the addresses, and a
bus cycle is required for each 16 bits
of addressing information or actual
data that needs to be transferred. An
indexed addressing mode, or any-
thing with a displacement, for in-
stance, will require 1 additional bus
cycle for the address extension word
and another to get the data (2 if the
data is a long word); add about 8
more clock cycles (12 if the data is a
long word) to the execution time of a
given instruction that uses this mode.
Some sample worst-case clock tim-
ings for various addition instructions
are given in table 3.

Like the ADD instruction, other
MC68000 arithmetic instructions
come in several forms. The subtract
instructions have forms analogous to
the add instructions—SUB, SUBA,
SUBI, SUBQ), and SUBX. Instructions
for compare operations that are all
similar (CMP, CMPA, CMPI) per-
form the subtractions without storing
a result (the net effect is to set the ap-
propriate status register bits). A
memory-compare instruction

(CMPM) allows two strings of binary
integers in memory to be compared
by sequencing through them to higher
memory. Two versions of the single-
operand negate instruction, NEG and
NEGX, ignore and include, respec-
tively, the state of the X bit.

Multiplication and Division

Two versions of multiply and
divide instructions make fast work of
more complex arithmetic. The two
versions are unsigned (MULU and
DIVU) and signed (MULS and DIVS)
instructions; these versions interpret
their operands as one’s-complement
and two’s-complement numbers, re-
spectively. All of these instructions
can include immediate values as the
multiplier or divisor so that variables
can be operated on by constants.

The multiply instructions take two
16-bit operands (one from any mem-
ory location by any addressing mode
or any data register, and the other
from the lower 16 bits of any data
register), multiply them, and place
the resulting product into the full 32
bits of the same data register. The
divide instructions take the dividend
from any 32-bit data register and
divide it by a 16-bit divisor, which
may come from memory using any
addressing mode or any data register.
The quotient is placed in the lower 16
bits of the same 32-bit data register,
while the 16-bit remainder is placed in

Listing 1: A short MC68000 assembly-language routine to multiply two 32-bit

register DO contains 32-bit multiplicand

register D1 contains 32-bit multiplier

registers DO and D1 contain the 64-bit result,

with

initialize product area

save copy of multiplicand

multiply low-order parts

high-order multiplicand
times low-order multiplier

now use high—order multiplier
low-order multiplicand
times high—order multiplier

carry into high-order
word of product

high—order nmuliplicand

times high—-order multiplier

numbers.
Input:
Output:
the most significant byte in DO

SUBQ #4,A7
CLR.L -(A?7)
MOVE . L DO, -(A?7)
MULU D1,DO
MOVE . L DO,8C(A7)
MOVE . W (A7) ,DO
MULU D1,DO
ADD. L DO,6CA7)
SWAP D1
MOVE . W 2(A?7),D0
MULU D1,DO
ADD . L DO,6 (A7)
BCC MUL32A
ADDQ . W #1,4C(A7)

MUL32ZA MOVE . L (A7)+,D0
SWAP Do
MULU D1,DO
ADD . L (A?7)+,D0
ADDQ #4,A7
MOVE . L (A?7)+,D1

the upper 16 bits of the same register.
The divide instruction has two
characteristics that may be undesir-
able and so are specially handled. All
of us remember from high school and
college that there just isn’t any good
way to divide by zero. The result is
infinite if it's defined at all. Well,
Motorola’s designers didn’t think
they knew any better than the mathe-
maticians, so if a zero divisor is
detected, the divide instructions do
not execute, and a special “trap” pro-
cedure is entered. Since the trap
operation will be covered in part 3 of
this article, let’s just say that a “zero-
divide trap” specially calls the operat-
ing system to decide what to do.
The other thing that could happen
is that the divisor could be just too
small for the dividend and the quo-
tient could require more than 16 bits
in which to be expressed. When this
overflow condition is detected, the
division is halted, the overflow (V)
status register code bit is set, and the
instruction is concluded without
overwriting either of the original
operands. Thus, following any divide
instruction, you should check the
overflow bit and act accordingly.

load low-order product

For a number of reasons, there are
no instructions to multiply two 32-bit
numbers or to divide a 64-bit number
by a 32-bit number. First, the need for
such instructions is very infrequent in
most applications. Second, there are
no other facilities in the machine to
handle 64-bit quantities. Finally,
because such instructions would take
a lot of time to execute, the MC68000
would occasionally take much longer
to respond to an interrupt—a situa-
tion the designers did not want to
create.

The multiply instructions take
fewer than 70 clock cycles to execute
using register operands, and the
divide instructions require fewer than
140 clock cycles for an unsigned
operation (158 cycles for a signed
operation); however, different com-
binations of 1s and Os in the operands
can make these operations take less
than these times to execute. A short
MC68000 routine that performs a
32-bit by 32-bit multiplication is
shown in listing 1. It executes in
about 60 microseconds, which is less
time than that taken by the dedicated
instruction that does the same thing
in the Z8000.

Binary-Coded Decimal Arithmetic

The final type of arithmetic instruc-
tions handles decimal digits. The
most common form of human-inter-
face data comes as binary-coded
decimal or BCD data. This method of
encoding numeric information as a
string of bits stores each decimal digit
of the number as a 4-hit binary num-
ber. Numbers are easily encoded into
BCD form; once inside the computer,
they are easily printable in human-
readable form (much more so than
numbers encoded in signed floating-
point binary form). Because the BCD
format is so useful, most micropro-
cessors include instructions that
operate on BCD numbers. To allow
these BCD types of data to be manip-
ulated, the MC68000 has three in-
structions that add (ABCD), subtract
(SBCD), and negate (NBCD) packed
digits. Each of these instructions
works on two BCD digits packed into
a byte.

Because BCD numbers may be
many digits wide, the BCD instruc-
tions work as multiple-precision
operations, which means they have
the characteristics of the other multi-
ple-precision instructions. The
operands can be in data registers or in
memory (in which case, they are
operated on using the predecrement
addressing mode). The value of the X
status register code bit is included in
the BCD operations, and the Z status
register bit is handled so that it prop-
erly reflects the state of the entire
result, not just the final portion.

Once again, the best thing about
these instructions is the simplicity
with which they operate, especially
when compared with the often mys-
terious code a programmer had to
write to do BCD arithmetic on most
older microprocessors. A glance at
MCé68000 code performing BCD
functions (see figure 4) shows how
simple such code is. Here, two 6-digit
numbers need to be added. While a
short loop might make the routine
more generally useful, inline code is
fastest and illustrates the point best.
First, we must load the two address
registers to be used as memory
pointers with the correct values. The
next instruction (SUB D1,D1) is a
quick way of both setting the Z bit

XBCcp * X5 X4 X3 X2 X3 Xo
YecD *Ys Y4 Y3 Y2 Y1 Yo

CODE TO ADD Xgep TO Ygcp

MOVE. L #$102, Al
MOVE .L #$202, A2

sus D1,D1

ABCD -(A1),-(A2)
ABCD -(A1), -(A2)
ABCD -(A1), -(A2)

ADDRESS MEMORY
{HEXADECIMAL) (ORGANIZED
AS WORDS)
FE X5 Xg

100 X3 X2 X1 Xg

102
1FE Yg Yq
200 Y3 Y2 Y1 Yo
202

LOAD ADDRESS JUST PAST X IN Al

LOAD ADDRESS JUST PAST Y IN A2

CLEAR X STATUS BIT AND SET Z STATUS BIT
BCD ADDITION OF BOTTOM TWO DIGITS
BCD ADDITION OF MIDDLE TWO DIGITS
BCD ADDITION OF TOP TWO DIGITS

Figure 4: An example of multiple-precision binany-coded decimal (BCD) arithmetic.
Because the predecrement addressing mode used (“ABCD— (A1), —(A2)") decrements
the register pointers before performing the BCD addition, registers A1 and A2 must be
loaded with a value that points to the byte immediately after the least significant byte of

the number to be worked on.

and clearing the X bit, though a
MOVE #%$04,CCR would do virtually
the same thing.

The three ABCD (add binary-
coded-decimal) instructions begin at
the least significant two digits and
move toward the most significant;

this must be done to get accurate
results from use of the extend bit. The
result replaces the BCD number
pointed to by A2; when the routine
has finished, A2 points to the first
byte of the BCD result (which is
stored in order of most to least signifi-

—

cant digit). Similar subtraction and
negation operations can be built in
the same way.

Logic Instructions

The MC68000 logic instructions are
simple but powerful. The AND, OR,
exclusive-or (EOR), and NOT in-
structions, like the arithmetic instruc-
tions, allow 8-, 16-, and 32-bit quan-
tities in data registers or in memory to
be operated on with any data register
or an immediate constant, or to be in-
verted. These instructions are just as
fast as the arithmetic instructions.
Additionally, ANDI, ORI, and EORI
instructions are used to clear, set, and
toggle individual status register code
bits.

A serial shifter in the MC68000 can
be moved any number of bits to allow
for shifting of 8-, 16-, and 32-bit data.
The arithmetic-shift-right instruction
(ASR) shifts the least significant bit to
the X and C status bits while duplicat-
ing the most significant bit before
moving it to the right. In the arith-
metic shift left (ASL), the logical shift
right (LSR), and the logical shift left
(LSL), the bit shifted out of the data
area goes into the X and C bits, while
the bit into which no bit is being
shifted is filled with a 0.

Status
Status Register Register
Instruction Register Codes
cC X V
ASR.B #3,D3 (D3 before) 10111010 01011111 01100101 10101100 X X X
(D3 after) 10111010 01011111 01100101 11110101 (12 clock cycles) 1 10
ASL.L #5,D1 (D1 before) 11101100 10100010 11011101 00101111 X X X
(D1 after) 10010100 01011011 10100101 11100000 (18 clock cycles) 1 1 1
LSL.W D5,D7 (D5 before) 00101000 10001100 11101001 00101001 X X X
(D7 before) 10111010 01011111 01100101 00010101 X X X
(D7 after) 10111010 01011111 00101010 00000000 (24 clock cycles) 0O 0 O
ROL.L D2,D1 (D2 before) 01100101 00101010 10111110 01110100 X X X
(D1 before) 10010101 00101000 01000101 10010100 X X X
(D1 after) 01011001 01001001 01010010 10000100 (48 clock cycles) 0 x O
ROXR.W #4,D6 (D6 before) 10111010 01011111 01100101 00010101 x P x
(D6 after) 10111010 01011111 101P0O110 01010001 (14 clock cycles) 0 0 O
ROR $A0000 (word AOOQO before) 10011100 10101001 X X X
(word A00OQO after) 11001110 01010100 1 x 0
Notes:
1. An "X status-register bit may represent either a 0 or 1 value.
2. Notice that in the LSL.W and ROL.L examples the bottom six bits of the source operand (D5 and D2, respectively) are used as the
number of bits to be shifted or rotated.
3. The "P" status-register bit in the "ROXR.W #4,D6"' example is specially marked to show that it is shifted into the body of the D6
register as a result of the ROXR.W instruction. Note that .W causes only the bottom 16 bits of the register to be rotated.
Table 4: Examples of shift and rotate instructions and their effect on registers and memory.

The rotate instructions shift bits
around in a circular manner so that
bits shifted out of one end of an
operand are shifted in the other end,
with the bit being shifted out of the
data area also being copied into the C
status register code bit and, optional-
ly, the X bit. The rotate instructions
are rotate right and rotate left (ROR
and ROL); the ROXR and ROXL in-
structions are used when you want to
update both the X and C bits.

One single shift or rotate instruc-
tion can move register data as many
as 31 bit positions in the selected
direction. You can specify this count
value either statically (as a value be-
tween 1 and 8 encoded into the in-
struction op code) when the instruc-
tion is written or dynamically (as a
value between 0 and 63 stored in a
specified data register) when the in-
struction is executed. For simplicity,
memory operands to be shifted or
rotated are limited to displacements
of 1 bit and operations on word-sized
data only. Table 4 illustrates some
shift and rotate instructions, their
timing, and their effects.

An important aspect of program-
ming that until the MC68000 was
quite limited is that of individual bit
manipulation, the ability to single out
bits of memory, test them, set them,
and clear them. Such operations are
useful; in 17O, for instance, you fre-
quently need to sense the state of a
single input line, drive a particular
output line high, or turn a servo-
mechanism off. These operations in-
volve only a single bit associated with
a latch, peripheral, or memory loca-
tion.

In the past, most of us have done
the best we could by executing AND,
OR, and EOR instructions to the
desired location. But the difficulty

with these operations is their crude-
ness. Sure, they allow us to change
more than 1 bit at a time, but it turns
out that much more secure code can
be written when single events or con-
ditions affect single outputs. Also,
because it is impossible to sense the
state of more than one input at a
time, nothing is gained by the ability
of such instructions to work on multi-
ple bits.

Four powerful MC68000 instruc-
tions make all bit-manipulation func-
tions far simpler. They are the bit test
(BTST), bit test and set (BSET), bit
test and clear (BCLR), and bit test and
change (BCHG) instructions. How
will you specify the target bit? The
MC68000 uses two methods, similar
to those used for shift and rotate in-
structions. Either a data register or a
series of bits in the bit-instruction op
code names the bit to be affected; in
this case, however, the bit number
can be from 0 to 31 if a register is af-
fected, or from O to 7 if the area af-
fected is a memory location. (In the
MC68000, bits in memory are identi-
fied by the bit number of the byte in
which they reside.)

With true bit-manipulation instruc-
tions, not crude logic instructions,
bit-manipulation operations—sensing
the state of inputs, driving outputs,
setting register bits, setting attribute
bits, transposing bit matrices, or just
building special data types—are
straightforward tasks, not the chores
they usually are with other micropro-
cessors. The MC68000 makes it very
easy to specify precisely the bit to be
changed.

Conclusions

The computation and data-move-
ment instructions that perform the
major work in any MC68000 program

are numerous, comprehensive, and,
perhaps most important, straightfor-
ward and easy to use. The versatile
MOVE instruction on the MC68000
replaces a confusing variety of data-
movement instructions on other
microprocessors. Flexible add, sub-
tract, compare, negate, multiply, and
divide instructions operate on any
register, with constants, on stacks,
and in memory using any addressing
mode. For digital data rather than
binary data, pairs of BCD numbers
can be added, subtracted, and
negated. The common logic opera-
tions of AND, OR, exclusive-or, and
NOT can similarly operate on data
registers and constants, and in
memory.

When data needs to be shifted
about, it can be arithmetic-shifted,,
logic-shifted, or rotated left or right.
It can also be shifted or rotated multi-
ple bit positions, with the count of the
movement either predetermined and
constant, or variable and dependent
upon other data.

Individual bits in data or [/O can
be separately tested to determine their
state; they can also be set, reset, or
toggled. The bit to be worked on can
be chosen either when the instruction
is written or, based on other data,
when it is run.

All the above instructions can
operate on 8-, 16-, or 32-bit data,
with a uniform yet flexible set of ad-
dressing modes. This combination of
good instruction set design, computa-
tional power, and ease of use make
the MC68000 microprocessor an ex-
cellent one for assembly-language
programming. Next month, Il
discuss program-control instructions
and several advanced instruction
groups.®

Design Philosophy Behind
Motorola’s MC68000

Part 3: Advanced instructions

Last month (May BYTE, page 342),
I discussed the data-movement,
arithmetic, and logic instructions of
Motorola’s MC68000 family of
microprocessors (sometimes referred
to as MACSS—Motorola’s Advanced
Computer System on Silicon). I ex-
amined a useful set of instructions
based on a philosophy of or-
thogonality, which eliminates
duplication of effort by similar in-
structions (thus making the micropro-
cessor easier to understand and use).
In this final part of the series, I will
discuss branching, jumping, error-
trapping, supervisor-mode, and other

advanced instructions of the

MC68000.

Branching and Jumping
Data-movement, arithmetic, and

logic instructions do most of the com-
putational work in programs, but
computers would be little more than
adding machines without program-
control instructions. These instruc-
tions give computers the capability to
make decisions by executing nonse-
quential areas of code based on con-
ditions tested at the time of execution.
Branch instructions enable the
microprocessor to transfer control to
portions of code relative to the in-
struction being executed—that is, to
transfer control to the effective ad-
dress, which is the sum of the current

Thomas W. Starnes
Motorola Inc., Microprocessor Division
3501 Ed Bluestein Blvd.

Austin, TX 78721

contents of the program counter and
a given offset. You use branch in-
structions extensively when writing
position-independent code. Jump in-
structions differ from branch instruc-
tions in that the jump instructions
transfer control to absolute locations
in memory, are unconditional, and
can use any of the MC68000 ad-
dressing modes to specify the destina-
tion.

The MC68000 has a flexible condi-
tional branching instruction, referred
to as a Bcc instruction, in which the
letters cc denote a variety of condi-
tions that can be specified. There are
14 different conditions, including
such things as greater than (BGT),
less than or equal to (BLE), equal
(BEQ), overflow (BVS), and low or
same (BLS); a complete list is given in
table 1. The BRA instruction is not
conditional but always forces the
branch to occur.

You cause branching by the addi-
tion of some value to the program
counter (PC). Branch instructions in-
clude an 8- or 16-bit signed displace-
ment value that you add to the pro-
gram counter. Because the displace-
ment is a signed number, it can cause
either a forward or backward branch.
If the condition being tested evaluates
to “true,” the MC68000 will take the
branch; if it is not, it will execute the
next instruction in sequence.

Even though all MC68000 instruc-
tions are multiples of 16 bits and must
be aligned on word boundaries (i.e.,
start on even addresses), the
MC68000 interprets the displacement
in all branching operations to be a
byte count, not a word count. This is
done to give the machine maximum
flexibility, while still providing the
most opportunity for future growth.
Limiting the machine to word offsets
would have prevented any future
MCé68000-family processor from hav-
ing instructions that could be mis-
aligned (i.e., did not start on a word
boundary) or be multiples of 8 bits.
Since the flexibility to have mis-
aligned instructions still exists, it
makes sense to follow the natural
byte-oriented addressing of the
MC68000. A 16-bit offset gives an ad-
dressing range of —32,768 bytes to
+32,767 bytes, not the puny 8-bit
computer range of —128 to +127
bytes.

Versions of the jump and branch
instructions also exist for subroutine
calls. You can branch to a subroutine
(BSR) with a displacement value, or
you can jump to the subroutine (JSR)
by specifying the absolute address.
Subroutine calls save the return ad-
dress (the current value of the pro-
gram counter) on the system stack
before transferring control to the
subroutine; the return address is

Table 1: Conditional tests for the Bcc
substituting the letters in the first column

"“

if the expression evaluates to “true”’;

condition being evaluated.

Mnemonic Condition Description Flags Tested
T true 1
F false 0
HI high CAZ
LS low or same C+2Z
CC carry clear c
CS carry set C
NE not equal z
EQ equal Z
vC overflow clear v
VS overflow set \
PL plus N
Ml minus N
GE greater or equal (NAV)V(NAV)
LT less than (NAV)V(NAV)
GT greater than (NAVAZ)V(NAVAZ)
LE less or equal ZV (N /_) \Y (ﬁ/\ V)

many as 16 Bcc (branch on condition) and DBcc (test condition, decrement, and
branch) instructions; for example, BHI branches if both the carry and zero bits in the
status register are cleared. The third column indicates that the branch will take place
A" indicates a logical AND operation, while
“v" indicates a logical OR operation. The same conditions are available to another
instruction group, Scc, which sets or clears all the bits of a given byte based on the

and DBcc groups of instructions. By
for the letters cc, you can construct as

removed from the stack and restored
to the program counter when the
MC68000 executes the RTS (return-
from-subroutine) instruction.
Sometimes you will want to save
and restore the condition codes that
existed just before the subroutine was
called. This is easy enough to do with
the MOVE SR, —(A7) instruction,
which pushes the status register onto
the system stack (pointed to by
register A7). You can also save

selected registers with a single
MOVEM instruction (discussed last
month). At the close of the

subroutine, you can use a MOVEM
instruction to restore the saved
registers and then use an RTR instruc-
tion (return and restore condition
codes) to return and restore the saved
condition codes in one operation.

Looping and String Constructs
Many times, a backward branch is
used to create a programming loop,
which is a very important part of pro-
gramming because it allows opera-
tions to be repeated until a desired

state or condition is reached.
Although the looping constructs that
most people are familiar with provide
for a loop that ends with a given con-
dition or one that ends after a certain
number of iterations, a loop that can
end by either means is often very
useful. The double condition allows a
loop to be performed until a given
condition is met while ensuring that
the loop does not process invalid data
(in the case of, say, a string operation
that reaches the end of the data
without meeting the condition) or run
forever (in the case of a numerical
analysis algorithm that never con-
verges to a given minimum
tolerance).

The MC68000 has just the instruc-
tion for this kind of loop. The
decrement-counter-and-branch-
conditionally instruction (DBcc) uses
any data register as a counter and
branches based on both the evaluated
condition and the data-register value.
A DBcc instruction causes the follow-
ing sequence of events. First, the
MC68000 checks to see if the stated

condition is met; if so, execution con-
tinues with the next instruction, thus
ending the loop. If the condition is
not met, the specified register is
decremented by 1. If the resulting
value is —1, the loop is again ended
by having the execution continue
with the next intruction; otherwise,
the branch to the top of the loop oc-
curs.

Note that the DBcc instruction tests
the register for a value of —1. At
first, this might seem odd, but there is
a very good reason for it. Most loop-
ing constructs require extra steps to
ensure that the loop can execute zero
times when needed and that the loop
tests for the desired condition before
executing a given iteration. By having
the loop entered just before the DBcc
instruction (at the end of the loop)
and by designing the DBcc instruc-
tions so that they end the loop on a
value of —1 instead of 0, you create a
loop that meets both of the above
conditions without being burdened
by an explicit second test. As an add-
ed bonus, a simple conditional
branch instruction (using the same
condition as the DBcc instruction)
enables you to determine whether the
program exited the loop because of
the iteration counter or the condition.

The DBcc instruction provides a
huge set of string operations,
especially in conjunction with the
predecrement and postincrement ad-
dressing modes. By using the ap-
propriate MOVE instruction, for ex-
ample:

MOVE Dn,(An)+;

MOVE (An)+,(An)+;

MOVE —(An), —(An);
or MOVE (An)+,—(An)

followed by a DBRA instruction, you
can have the MC68000 fill a block of
memory, copy strings, and reverse
strings. CMPM —(An), —(An) with
DBNE compares two strings, while
CMP Dn, —(An) with DBEQ searches
a string for a pattern match. (See part
2, May BYTE, page 342, for an ex-
planation of this address mode nota-
tion.) Multi-instruction loops can
make very powerful string operations
quite simple.

You can see the real beauty of the

Listing 1: A string translation program that uses the DBEQ instruction to end a loop
based on either of two conditions: end of string (as determined by the string length,
given in register D3) or discovery of a termination character (stored in register D4). This
program translates a string character by character according to the character values
stored in TABLE. For a given character, its value (stored in register DO) is used as an in-
dex into TABLE (pointed to by register A2); the actual translation takes place at LOOP.

MOVEQ #$13,D4
MOVE #COUNT,D3
MOVE.L #STRING Al
LEA *+TABLE,A2
CLR DO
BRA POOL
LOOP MOVE.B 0(A2,D0),(Al) +
POOL MOVE.B (Al),DO
CMP.B D4,D0
DBEQ D3,LOOP

load termination character into register
load string length

load string beginning

offset to conversion table

prepare index for word

start translation

translate and store result

load next character

termination character found?

if not and not end of string, branch
Execution time where n bytes are translated:

72 + (40 « n) clocks = 649 us for 128 bytes at 8 MHz

DBcc -instruction in the assembly-
language program of listing 1, which
translates a string of characters until a
terminating character shows up or the
end of the string is reached. Register
D3 has the string length in it, while
register D4 contains the terminating
character you're looking for. Register
Al points to the string, while the
translation table (which is found
some distance from this code) has its
location placed in register A2. The
routine in listing 1 runs very quickly
and demonstrates the power that
results from a combination of ver-
satile instructions and various ad-
dressing modes.

High-Level Language Aids

Many high-level languages, such as
Pascal, use sophisticated program-
ming concepts that can be enhanced
by the use of reentrant and recursive
programming and subroutines with
local variable areas. The MC68000
has the facilities to support these
techniques.

You can enter reentrant code at any
time by several execution processes,
and it will return correct results to all
of them. This is very important for
interrupt routines that may interrupt
themselves before completion. Only
reentrant code will correctly execute
the interrupt routine the second time,
then return to its interrupted version
and correctly execute it. The
MC68000 instruction set makes reen-
trant programming easy.

Recursive programs are those that

can call themselves. An example of
such a program might draw a straight
line between two points by repeatedly
plotting the midpoint of the line, then
calling itself to operate on the two
line segments created by the new
point. Recursive programs are
created to solve complex algorithms
with relatively small amounts of
code. Their disadvantages include
slow execution and heavy use of the
stack (or some other area) for storing
each level's set of temporary
variables. Of course, the MC68000
designers included special instruc-
tions to make this task easier, LINK
and UNLK (unlink).

LINK and UNLK allow subroutines
to allocate part of the stack for the
storage of local variables quickly and
easily. Often, a programmer needing
to refer to variables associated with a
given subroutine call will decrement
the stack pointer to reserve an area of
memory for such use (“decrement”
because stacks usually ‘“‘grow”
downward in memory) and save the
address of the top edge of this area as
a reference point; this address is
called a frame pointer (FP) and is a
value that, on the MC68000, is stored
in one of the seven address registers
AO through A6. The stack pointer, of
course, will move up and down dur-
ing the execution of a subroutine as
stack operations are performed. The
stable frame pointer always gives a
good reference point to the variables,
while the stack pointer would give a
wildly varying reference to those

same variables. Now let’s look at a
good method for going into a new
routine.

To show how the LINK and UNLK
instructions help give the program-
mer access to local variable areas,
let’s look at the example of figure 1.
(Remember that the frame pointer is
actually an address register that is
designated by the programmer for
this use.) Assume that you are in
subroutine A, which has its own local
variable area, pointed to by the frame
pointer. Before subroutine A calls
subroutine B, it first places
parameters on top of the stack; see
figure 1a. After the subroutine call to
B, the return address to A is pushed
onto the stack (figure 1b). The LINK
instruction contains the name of an
address register that is to be taken as
the frame register and a displacement
that indicates the amount of memory
to be saved for local variables. When
it is executed, three things happen
(figures 1c-le): the contents of the
frame pointer (pointing to a stack
location containing the previous
frame pointer) are pushed onto the
stack, the frame pointer itself is made
identical to the stack pointer, and the
stack pointer is changed by the
displacement given in the instruction.
(The displacement is a signed value
and must be negative to save local
variable space—if it is positive, you
will lose information from the stack.)
As shown in figure 1le, the stack
pointer points to the top of the stack,
and the frame pointer points to one
word below the subroutine B local
variable area. When the UNLK in-
struction is executed, the process is
reversed (figure 1f), leaving
subroutine B ready to execute an RTS
instruction and return control to
subroutine A.

Address Calculation in Hardware

Most microprocessor operations
deal either with data or program con-
trol. Most also use memory addresses
and, in the case of the MC68000,
have some rather sophisticated means
of generating those addresses. But the
addresses are used by the instruction
only to get to the data or program
location; the address itself is never
available to the programmer and is

(A) (8)

BEFORE AFTER
EXECUTION EXECUTION
OF JSR B OF JSR B

| RETURN ADDRESS
sP TO SUBROUTINE A

(C) (D)

AFTER AFTER

STEP 1 STEP 2

OF LINK OF LINK
INSTRUCTION INSTRUCTION

SP = - e
POINTER TO | '~ PoNTER TO
SUBROUTINE A FP [~| SUBROUTINE A FP

(E) (F)
AFTER AFTER
STEP 3 UNLK
OF LINK

INSTRUCTION

RETURN ADDRESS FP | RETURN ADDRESS
TO SUBROUTINE A TO SUBROUTINE A

RETURN ADDRESS
TO SUBROUTINE A

RETURN ADDRESS
TO SUBROUTINE A

= PARAMETERS FOR
SUBROUTINE 8

SPACE FOR
SUBROUTINE A
LOCAL
VARIABLES

™ PREVIOUS FP

//

//

//

Figure 1: Use of the LINK and UNLK (unlink) instructions, both of which help the assembly-language programmer manage memory
areas to be used for local variables in subroutines. See text for details.

often lost by the end of the instruc-
tion. However, it is sometimes the ad-
dress itself that you need in your pro-
gram. The MC68000 has two instruc-
tions that help you to get just the ad-
dress, without using it to fetch any
data. By having the MC68000
calculate the address itself (instead of
writing a sequence of assembly-
language instructions to do the same),
you can do the calculation much
faster without tying up either
memory or registers.

The load-effective-address (LEA)
and push-effective-address (PEA) in-
structions calculate a given effective
address and place it either in any ad-
dress register (LEA) or on the stack
(PEA). You can calculate the effective
address by using any available ad-
dressing mode with any of the ap-
propriate registers. The LEA and PEA
instructions can be useful when you
are running position-independent
code. Sometimes to take advantage of
an addressing mode that runs more
quickly than, say, the program-
counter-relative addressing mode,

you may want to calculate the ad-
dress using LEA and access that area
of memory by addressing indirectly
through the address register in which
the LEA instruction left the calculated
address. PEA and LEA are also useful
for passing pointers of data to other
routines or placing them in memory.
Sometimes, it's helpful to verify that
an effective address is correct or at
least in range. Without these two in-
structions, it would be extremely dif-
ficult to use processor-generated ad-
dresses.

Instructions for Shared Resources

Systems with more than one micro-
processor running at a time are often
designed to share some resources,
e.g., memory, buffers, 1/0, tasks,
and so on. For this to happen, the
programs running on the micropro-
cessors must have a secure method of
determining which processor has
rights to a certain part of memory, a
buffer, 1/O, or a task. The MC68000
has an instruction, TAS (test and set),
that makes such allocation of

resources between multiprocessors
simple and secure.

The key to this instruction is that it
is indivisible, i.e., it can lock out all
accesses to the designated addressing
location until work on the location is
complete. The test-and-set instruction
tests a given byte, sets the negative
(N) and zero (Z) status register bits
accordingly, and then sets the most
significant bit of the byte to 1.

In most cases, the microprocessor
uses the TAS instruction as follows: It
chooses a given byte to represent the
status of a shared resource (this byte
is often called a semaphore). If the
TAS instruction shows tlie byte to be
negative (if its most significant bit is
1), the querying microprocessor
knows that the resource is in use. The
processor can then either retest the
semaphore byte until it shows the
resource is available, or it can go
about some other task. If the TAS in-
struction shows the byte to be
positive (most significant bit is 0), the
microprocessor knows the resource is
free. Because the TAS instruction im-

-

o

mediately sets the most significant bit
to 1 (and because the instruction can-
not be interrupted before
completion), all the microprocessors
with access to the semaphore byte
have correct information about the
shared resource. The microprocessor
that has access to the shared resource
has the responsibility of clearing the
most significant bit when it is
finished.

The only reason this process can
work effectively is that the indivisible
read-modify-write bus cycle (a special
bus cycle) that accompanies the TAS
instruction prevents, with hardware
signals, any other device from access-
ing the semaphore byte between the
time the TAS reads it and the time it
is through setting the bit in it. This
means that no two processors can
read a semaphore byte and both be
told that the resource is available.
Thus, a secure way exists for software
to determine the availability of
shared resources in a multiprocessor
MC68000 system.

Supervisor and User Modes

The MC68000 executes instructions
at one of two operating or privilege
levels. The upper level, called the
supervisor level, provides a protected
environment for the operating system
to run in, isolating it and its resources
from the less trustworthy user code.
After a reset operation, the MC68000
begins running in the supervisor
mode, in which the operating system
and all interrupt routines are also
running. The lower level, called the
user level, is where most application
programs execute and, therefore,
where the processor usually spends
most of its time.

The only controlled way to get
from the supervisor level to the user
level is by changing the S/U (super-
visor/user) status bit (bit 13) in the
processor status register. This is how
the operating system switches to
begin a user-level program. Should
an interrupt be handled in the middle
of a user-level routine, the interrupt
routine will run at the supervisor
level, but upon return to the inter-
rupted routine, the MC68000 will
return to the user level.

User-level programs are guaranteed

to go to the operating system only
through one of the 16 TRAP number
n instructions. You can view these in-
structions as supervisor calls; they
immediately transfer control to a
specific routine. Upon completion of
the TRAP routine, the processor will
usually return to the original user-
level routine to continue. Thus, there
are 16 different supervisor trap in-
structions, which, along with other
types of trap instructions, are listed in
table 2.

Many other means of getting to the
supervisor level of execution exist,
but they are either conditional (like
error traps) or asynchronous (like in-
terrupts). Regardless, all traps are
handled similarly by the supervisor.
Any trap causes the processor to save
the old program counter and status
register on the supervisor stack. Then
it will go to its external vector table
and get a value, appropriate for the
cause of the trap, to load into the pro-
gram counter. This allows each type
of trap to have a separate handling
routine to correct the problem caus-
ing the trap and return to the original
program.

Some of these other trap forms are
intentionally conditional. Depending
upon whether the overflow (V) condi-
tion bit is set, one instruction,
TRAPV, either does nothing or
causes a trap to occur, which forces
the MC68000 into the supervisor
state. This enables the program to
handle all overflow conditions
uniformly in a single operating-sys-
tem-level routine. Another such in-

struction is the check (CHK) instruc-
tion, which verifies that the contents
of any data register is greater than 0
but less than a specified bound. If it is
within the limits, then nothing hap-
pens and the next instruction is run. If
it is outside the bounds, then program
control jumps indirectly through the
vector table to a certain trap routine
for handling. This gives the program-
mer an easy way to check whether an
array index is within the proper
bounds for that array. In addition, at-
tempts to divide by 0 and access
misaligned data (words or long words
in memory on odd-byte addresses)
will cause trap routines to be ex-
ecuted.

Handling Illegal and
Unimplemented Op Codes

To allow room for future expan-
sion of the MC68000, designers did
not use all of the possible bit patterns
of the 16-bit op codes. Other micro-
processors try to execute undefined
op codes, often with disastrous
results that cause you to lose control
of the computer or even lose valuable
work. To assure a completely
foolproof system in the face of
undefined op codes, the MC68000
refuses to execute any illegal instruc-
tion and, instead, executes a specified
trap routine for corrective action.

To enable programmers to add
whole blocks of new instructions to
MC68000 processors, designers left
two subgroups of possible op codes
unimplemented. Any 16-bit op code
beginning with binary 1010 or 1111

Type of Trap Cause
address error
illegal instruction

zero divide
CHK instruction
TRAPYV instruction
privilege violation
mode
trace
set
line 1010 emulator
line 1111 emulator
TRAP n instruction

word or long-word access to an odd address

no valid instruction exists for this op code (op codes starting
with **1010..."" and ““1111 .. ." generate other traps;
see below)

attempt to divide by zero

CHK instruction failed (operand out of bounds)

overflow has occurred (V bit set)

attempt to execute a privileged instruction while in the user

an instruction has just ended and the T status register bit is
attempt to execute an op code that starts with *“1010"

attempt to execute an op code that starts with “1111"
TRAP n instruction executed (n=0,1, .. ., 15)

Table 2: Supervisor trap types and their causes.

e

STOP

RESET

RTE

MOVE (when moving a word to the
status register)

MOVE USP

AND, EOR, or OR (when combining an
immediate value with the status
register)

Table 3: Privileged instructions in the
MCé68000.

was left without definition in the
MC68000. Attempts to execute either
of these categories of op codes, even
though they could be considered il-
legal instructions, are trapped
separately. They cause either a line-
1010-emulator or a line-1111-
emulator trap routine to execute,
enabling the programmer to emulate
in software functions that are not im-
plemented in the processor chip of the
system. Currently, the 1111 op codes
are defined mostly as floating-point
instructions and so could be emulated
on the MC68000. The 1010 op codes
are still reserved for use in processors
beyond the MC68020.

Privileged Instructions

Privileged instructions have a
special characteristic—they can be ex-
ecuted only while the processor is
running at the supervisor level. At-
tempts to run them at the user level
force privilege-violation traps to oc-
cur, allowing the supervisor to take
whatever action it thinks suitable.

The privileged instructions are
listed in table 3 and are mostly self-
explanatory. These instructions are
restricted because they modify or
control resources or services that
must be under the control of the
operating system. Many of these in-
structions modify the upper portion
of the status register (SR), which con-
tains the S/U supervisor bit, the inter-
rupt mask, and a trace-mode switch.
Such resources are not meant to be in
the hands of the users, but main-
tained by the supervisor; this is why
they are restricted.

Another supervisor-privileged

resource is the supervisor stack
pointer (SSP). This pointer is visible
(as address register A7) only when the
MC68000 is running at the supervisor
level, just as the user stack pointer
(USP) is visible (as register A7) only
when the MC68000 is running at the
user mode. However, when the
operating system is ready to pull in a
new user-level task, it needs to be
able to access the hidden USP to ini-
tialize it. This is done with a special,
privileged MOVE USP instruction.

The STOP instruction halts pro-
cessor execution of further instruc-
tions, while waiting for an interrupt,
a trace exception, or a reset to initiate
new activity. The instruction also
loads the status register with an im-
mediate 16-bit value, allowing the
programmer to enable certain inter-
rupts before stopping the
microprocessor. Only the supervisor
can initiate this type of operation
because, in a user’s hands, the opera-
tion might throw off all sorts of
operating-system timing integrity
(such as time-slice clock signals) and
generally brings the system to an ir-
recoverable halt. Also, the instruc-
tion must be restricted because it af-
fects the entire status register.

The RESET instruction is a unique
and powerful operation. Its execution
pulses the reset line on the MC68000
without resetting the processor itself.
You use this instruction typically
after a catastrophic failure, from
which the operating system is trying
to recover on its own. It enables the
operating system to initialize its exter-
nal environment (i.e., reset the entire
system except for the microprocessor)
without forcing itself into a complete
restart. Obviously, this instruction’s
power makes it inappropriate for the
user level.

One final privileged instruction is
the RTE (return-from-exception) in-
struction. An exception is anything
that causes the microprocessor to per-
form an operation other than the next
normal instruction. Interrupts and
traps, then, are exceptions. The RTE
is similar to the return-from-interrupt
instruction of most microprocessors.
It basically reloads both the program
counter and the status register with

the values from the top of the stack.
Because all exceptions force the pro-
cessor to execution in the supervisor
mode, the RTE instruction will be ex-
ecuted only in that mode; this makes
it a privileged instruction.

Note, once again, that privileged
instructions can be executed from
only the supervisor level of opera-
tion, where the operating system
usually resides. The two different
levels of privilege and the restricted
use of privileged instructions allow
you to build systems that prevent
user-level application programs from,
inadvertantly or otherwise, running
rampant through operating-system
code and data.

Conclusion

As you have seen in previous in-
stallments of this article, the
MC68000 architecture is really
designed with the programmer in
mind. The MC68000 branch and
jump instructions give you complete
control over program flow and
simplify often-used looping and
string-movement constructs. The link
and unlink instructions make it easier
for you to create modular programs
that use local variables. Other in-
structions carry out complex address
calculations quickly, help mediate the
use of shared resources, provide for
the data integrity of the operating
system, and allow recovery from er-
rors under program control. In addi-
tion, planners designed the architec-
ture and instruction set with far
greater things in mind and made the
set easy to expand to more powerful
and more comprehensive functions.
And all this has been done with a pro-
cessor for which performance was a
primary criterion.

Once you learn a few general con-
cepts of programming the MC68000,
coding an application comes easily.
Pick up an MC68000 user’s manual
and a similar guide for any other
16-bit microprocessor. Then spend an
hour or two learning each. Code a
short program or two, and compare
just how easy the MC68000 is to
work with. And if you choose to
write code for a larger program, you
will find your task to be simple

regardless of program size.

The MC68000 was designed to be a
programmer’s instrument through
which programmers and system
designers could use their creativity to
engineer a system to fit the applica-
tion instead of having to figure out
some trick to get the microprocessor
to perform the needed task. We at
Motorola believe that using the right
tool gets a job done faster with fewer
mistakes, and the MC68000 is such a
tool.m

About the Author

Thomas Starnes is an electrical engineer who
has spent the last five years helping to plan the
direction of the MC68000 family of processor
products for Motorola.

A16640-2 PRINTED IN USA 4-85 IMPERIAL LITHO C30281 5,000

