
COMPONENTS

Is Your 64K Dynamic RAM Refresh
Scheme Killing Yourµ P Perforn1ance?

by Dick Brunner, Motorola, Inc.,
MOSIC Div., Austin, TX

One of the major applications for 64K
dynamic random access memories
(DRAMs) is main memory for µPs and
computers. Their high density, low
power and fast access make them ideal
for this application. To accomplish
this high density and low power, the
64K dynamic RAM employs a storage
element consisting of a select transistor
and storage capacitor. Digital infor­
mation (logic zeros and ones) are
stored on these storage capacitors by
the presence or absence of charge. This
type of storage mechanism requires a
periodic update of the capacitor charge
state to insure that the stored informa­
tion is not lost due to leakage current.

To insure the capacitor's charge
state, a periodic refresh cycle is per­
formed on all memory cells; which for
most 64K DRAMs is accomplished

-Main Memory
68000/64K Read Timing Analysis

(6 M Hz/200ns)

Potential increase in
do ta throughput is
22% if MPU refresh
control is used vs.
that with memory
controlled refresh.

with 128 refresh cycles every 2ms.
On the surface, it appears that im­

plementation of the refresh cycles
along with the normal µP or computer
cycles would be straightforward and

0 167 334 501 584 688
&MHz 0

CLK

A5
163

ADD

RAS

CAS

DATA
DATA

DTACK
DTACK

-l 25

have minimal effect on data through­
put. However, a close look reveals that
implementation of these refresh cycles
dramatically impacts data throughput
of all high performance asynchronous
µPs and computers.

Slave Peripheral

Main memory is not generally regard­
ed as a peripheral, but is in actuality. In
fact, the memory is a slave peripheral
that must interface with at least two
master controllers-µP or computer
and a refresh controller which will in­
sure that the memory maintain valid
data. Since both controllers are asyn­
chronous to each other, there will be
brief periods in time when both are try­
ing to access the memory at the same
time.

To insure an orderly synchroniza­
tion of these signals during the periods
of contention, arbitration logic is
necessary. When two signals of dif-

-Main Memory
68000/64K Read Timing Analysis

(8 MHz/150ns)

125 250 375 438 500

VALID

185 340

335

292 1-T
20

T=DELAY +SKEW+ARBITRATION :$23ns T=DELAY +SKEW+ARBITRATION :$ 88ns

Figures la and 1 b illustrate the maximum data valid window fora read cycle for both a 6MHz and BMHz 68000, with respect to both a 200ns
and 150ns access part.

58 Digital Design FEBRUARY 1982

-Main Memory
68000/64K Write Timing Analysis

(6 MHzl200ns)

-Main Memory
68000/64K Write Timing Analysis

(BM Hz/150ns)

64K RAM

0 167 250 334 501 668 375 500
6 MHz I i-::- -, r -, r -1 ~· r::::'
CLK _J so L s1 _J "~ L S3 J S4 S5 J S6 L ~ S8 I

8 MHz

CLK ss _~ls1 J~
~70 ~ 237 -- ---,

L__

VALID

237
-1_

163 2ll0

437

+

574 ,-
..J

425
_I-

132

ADD~~~ --~
185 335

132

1
COLUMN

327

---i_
330 .+

""""'''D7~~ J
RIC ~~·..--- ROW

RIC~ ROW 217

~-~~~-~ 250

604

COLUMN--

425

DATA -L J- VALID

330 390

]-- DATA

w ~-------~ ..--+-----~~~-
258

w - L

Figures 2a and 2bshow the comparable worst case timingsfora write cycle. Note that data valid does not occur at the beginning of the cycle.

ferent frequencies are to be syn­
chronized, there will be periods when
input parameters are violated and the
logic device output will enter an
undefined state for a period of time.
Eventually the logic device output will
settle into a stable state. For an S74
type latch this period can be as long
as 75ns.

This extended period of time for a
bi-stable latch to settle out can be suffi­
cient for a high performance µP system
to result in a design that requires the µP
to generate wait states on all memory
cycles. To illustrate this, let us examine
the bus timing of the 68000 with respect
to the timing requirements of the
MCM6665 (64K DRAM). Figures la
and lb illustrate the maximum data
valid window for a read cyle for both a
6MHz and 8MHz 68000, assuming no
wait states, with respect to both a 200ns
and 150ns access part. Note from these
figures that for a worst case 68000 read
cycle time, and assuming zero logic
delays, that the minimum to maximum
data valid window Tis only 123ns and

Figure 3: The 68000 can handle the bus
arbitration of the refresh cycle requests.

88ns, respectively. If arbitration is re­
quired in the memory control logic to
accomodate the refresh cycles, then the
available time left for bus and timing
logic is only 48ns and 13ns, respective­
ly. Even using Schottky logic it would

be virtually impossible to have a con­
servative design that would not require
wait states during the read cycle.

The comparable worst case timings
for a write cycle are given in Figures 2a
and 2b. Note for a write cycle that the

Bus Arbitration Cycle Timing Diagram

CLK

R/W

DTACK

00.015 '---__,>--------<C

FC0.2 J<~-------~~(~ ___ __,~~--<c===
BR

BG

BG ACK

Processor ~ REFRESH ~Processor

FEBRUARY 1982 Digital Design 59

64K RAM

CLK

Bus Arbitration During Processor Bus Cycle

---~ Bus released from three state and
Processor starts next bus cycle
~negated internal
~sampled
~negated

SO S1 S2 s3S4SSS6 S7 S1 S2 S3S4 S5 S6S7SO S1
BR---~

8G BGACK _______ .::::=::::;----~

A1-A23
AS ----"__ __ _

Figure 4: The 68000 acknowledges the refresh cycle and the refresh controller originals
that it has control of the bus.

12MHz

osc

CLK

v
cc

A

B

c

p
Q

CK
a

K
R

MC6BOOl

6MHz
CLK

BR BG

CLK
A

B

c
D

R

INT

Figure 5: Illustrating a refresh control scheme for a 6MHz µP.

60 Digital Design FEBRUARY 1982

SYSTEM BUS

ADD

DATA

CONTROL

BGA

REF

timing of the 68000 and the 64K are
more compatible; hence, they will not
require wait states to accomodate ar­
bitration. It should be noted however,
that the data valid does not occur at the
beginning of the cycle (AS going
True); hence, to minimize the write cy­
cle time and accommodate the late data
valid, a late write cycle is required.

Moving onto the µP Card

Fortunately, there is an alternative
system design approach that will ac­
commodate the dynamic refresh
without having to suffer the arbitra­
tion overhead on every memory cycle.
The refresh control logic can be moved
to the µP card and integrated into the
control and clock circuitry of the µP.
Since the 68000 is an asynchronous µP,
it was designed to easily accomodate
asynchronous interrupts. It has inter­
nal logic to arbitrate incoming async
chronous interrupt requests such as
refresh. And, noted in Figure 3, the
68000 can handle, very time efficiently,
the bus arbitration of the refresh cycle
requests. Through the bus arbitration
logic of the 68000, a refresh cycle re­
quest can be initiated by driving the bus
request (BR) input low. The
68000 will acknowledge the refresh cy­
cle when bus grant (BG) is asserted.
The refresh controller signals that it
has control of the bus with a bus grant
acknowledge (BGACK) signal: this
sequence is illustrated in Figure 4. The
above refresh control scheme for a 6
MHz µP can be accomplished with the
logic design given in Figure 5; the
system design for the µP /memory in­
terface and refresh logic is illustrated in
Figure 6.

This µP /memory refresh scheme
will require only two µP read cycles to
accomplish the refresh cycle. The
following analysis gives the maximum
possible data throughput possible with
MPV refresh vs that possible with a
wait state for every memory cycle:
µP Refresh Control (memory cycle =
668ns). Refresh Period = 16 µs. Maxi­
mun number of cycles possible during
this period is 24. Total µP cycles possi­
ble is 22.
Memory Refresh Control (memory
cycle = 835ns; assume one wait state
for each cycle). Refresh Period =
16µs. Maximum number of cycles
possible during this period is 19. Total
µP cycles possible is 18.

~~S1~:~- ~ +5V

i
I
I

...L I ~ ~~~~S1571 1111 ii II ~::::::::E
A7~
AB

I I
~ I I

A9 I I
AW I IAA
~ M

:~~ ==+~ m L-~

+5V

19 11

l5TAOK

---UDSG SIP ,---; -
LS04 r r PiiJG r:o I - : .. ~UPPER BYTE r 537 • I • I • F/W LOWER BYTE

I L-....J
r---T0(3)

r-1-;--+sv
~ TTLDL.200

a
I

c

IN :>oo
40 80 1L'O 100

REFRESH

AMUXI

SIP ~I~ ~
U11 r ---..,

:-·5 : I I
I I
I I
I J

.....

~ I!!!!!!!! I
1Q""""'1
3 a

::::=:=::::'.~====:1:~======~~~~~ ~-:t . I f:~
A,7

I

~
~

CASL

'

Figure 6: System design for the
µ.Pl memory interface and refresh
logic.

-

-'° c
Cl ·u;
QI

0
ii -·a,
i5
N
00

~
>-
0,:

<
::::>
0,:

I
c:o
UJ u..

