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Is Your 64K Dynamic RAM Refresh 
Scheme Killing Yourµ P Perforn1ance? 

by Dick Brunner, Motorola, Inc., 
MOSIC Div., Austin, TX 

One of the major applications for 64K 
dynamic random access memories 
(DRAMs) is main memory for µPs and 
computers. Their high density, low 
power and fast access make them ideal 
for this application. To accomplish 
this high density and low power, the 
64K dynamic RAM employs a storage 
element consisting of a select transistor 
and storage capacitor. Digital infor­
mation (logic zeros and ones) are 
stored on these storage capacitors by 
the presence or absence of charge. This 
type of storage mechanism requires a 
periodic update of the capacitor charge 
state to insure that the stored informa­
tion is not lost due to leakage current. 

To insure the capacitor's charge 
state, a periodic refresh cycle is per­
formed on all memory cells; which for 
most 64K DRAMs is accomplished 
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Potential increase in 
do ta throughput is 
22% if MPU refresh 
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with 128 refresh cycles every 2ms. 
On the surface, it appears that im­

plementation of the refresh cycles 
along with the normal µP or computer 
cycles would be straightforward and 
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have minimal effect on data through­
put. However, a close look reveals that 
implementation of these refresh cycles 
dramatically impacts data throughput 
of all high performance asynchronous 
µPs and computers. 

Slave Peripheral 

Main memory is not generally regard­
ed as a peripheral, but is in actuality. In 
fact, the memory is a slave peripheral 
that must interface with at least two 
master controllers-µP or computer 
and a refresh controller which will in­
sure that the memory maintain valid 
data. Since both controllers are asyn­
chronous to each other, there will be 
brief periods in time when both are try­
ing to access the memory at the same 
time. 

To insure an orderly synchroniza­
tion of these signals during the periods 
of contention, arbitration logic is 
necessary. When two signals of dif-
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Figures la and 1 b illustrate the maximum data valid window fora read cycle for both a 6MHz and BMHz 68000, with respect to both a 200ns 
and 150ns access part. 
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Figures 2a and 2bshow the comparable worst case timingsfora write cycle. Note that data valid does not occur at the beginning of the cycle. 

ferent frequencies are to be syn­
chronized, there will be periods when 
input parameters are violated and the 
logic device output will enter an 
undefined state for a period of time. 
Eventually the logic device output will 
settle into a stable state. For an S74 
type latch this period can be as long 
as 75ns. 

This extended period of time for a 
bi-stable latch to settle out can be suffi­
cient for a high performance µP system 
to result in a design that requires the µP 
to generate wait states on all memory 
cycles. To illustrate this, let us examine 
the bus timing of the 68000 with respect 
to the timing requirements of the 
MCM6665 (64K DRAM). Figures la 
and lb illustrate the maximum data 
valid window for a read cyle for both a 
6MHz and 8MHz 68000, assuming no 
wait states, with respect to both a 200ns 
and 150ns access part. Note from these 
figures that for a worst case 68000 read 
cycle time, and assuming zero logic 
delays, that the minimum to maximum 
data valid window Tis only 123ns and 

Figure 3: The 68000 can handle the bus 
arbitration of the refresh cycle requests. 

88ns, respectively. If arbitration is re­
quired in the memory control logic to 
accomodate the refresh cycles, then the 
available time left for bus and timing 
logic is only 48ns and 13ns, respective­
ly. Even using Schottky logic it would 

be virtually impossible to have a con­
servative design that would not require 
wait states during the read cycle. 

The comparable worst case timings 
for a write cycle are given in Figures 2a 
and 2b. Note for a write cycle that the 
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Figure 4: The 68000 acknowledges the refresh cycle and the refresh controller originals 
that it has control of the bus. 
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Figure 5: Illustrating a refresh control scheme for a 6MHz µP. 
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timing of the 68000 and the 64K are 
more compatible; hence, they will not 
require wait states to accomodate ar­
bitration. It should be noted however, 
that the data valid does not occur at the 
beginning of the cycle (AS going 
True); hence, to minimize the write cy­
cle time and accommodate the late data 
valid, a late write cycle is required. 

Moving onto the µP Card 

Fortunately, there is an alternative 
system design approach that will ac­
commodate the dynamic refresh 
without having to suffer the arbitra­
tion overhead on every memory cycle. 
The refresh control logic can be moved 
to the µP card and integrated into the 
control and clock circuitry of the µP. 
Since the 68000 is an asynchronous µP, 
it was designed to easily accomodate 
asynchronous interrupts. It has inter­
nal logic to arbitrate incoming async 
chronous interrupt requests such as 
refresh. And, noted in Figure 3, the 
68000 can handle, very time efficiently, 
the bus arbitration of the refresh cycle 
requests. Through the bus arbitration 
logic of the 68000, a refresh cycle re­
quest can be initiated by driving the bus 
request (BR) input low. The 
68000 will acknowledge the refresh cy­
cle when bus grant (BG) is asserted. 
The refresh controller signals that it 
has control of the bus with a bus grant 
acknowledge (BGACK) signal: this 
sequence is illustrated in Figure 4. The 
above refresh control scheme for a 6 
MHz µP can be accomplished with the 
logic design given in Figure 5; the 
system design for the µP /memory in­
terface and refresh logic is illustrated in 
Figure 6. 

This µP /memory refresh scheme 
will require only two µP read cycles to 
accomplish the refresh cycle. The 
following analysis gives the maximum 
possible data throughput possible with 
MPV refresh vs that possible with a 
wait state for every memory cycle: 
µP Refresh Control (memory cycle = 
668ns). Refresh Period = 16 µs. Maxi­
mun number of cycles possible during 
this period is 24. Total µP cycles possi­
ble is 22. 
Memory Refresh Control (memory 
cycle = 835ns; assume one wait state 
for each cycle). Refresh Period = 
16µs. Maximum number of cycles 
possible during this period is 19. Total 
µP cycles possible is 18. 
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Figure 6: System design for the 
µ.Pl memory interface and refresh 
logic. 
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