
Xenix and the Motorola 
68000 family 

Bill Bateson looks at Xenix and Xenix 68000 

The main features of the Xenix time-sharing system are 
discussed, paying particular attention to those aspects 
of the operating system which relate most closely to 
the hardware on which the system is running. In 
particular the architecture of the CPU, the memory 
management hardware, and the disc system are 
discussed. 

microsystems Unix memory management 

WHAT IS XENIX? 

Xenix family tree 

Xenix is an enhanced version of the Unix time-sharing 
system, and its relationship to Unix can best be illus- 
trated by means of a family tree (Figure 1). 

Unix itself was first written and implemented by Ken 
Thompson (of Bell Labs) on DEC PDP 7 in 1969. His 
motivation to write the system was a general dissatis- 
faction with the available computer facilities. With 
Unix, he aimed to produce a system that provided a 
powerful development environment for programmers 
geared towards interactive use. This first attempt was 
successful enough to gain the interest of the second 
godfather of Unix, Dennis M Ritchie. Between them, 
they developed Unix from its first single-user version 
to the commonly available multiuser system. 

The essential features of Unix are as follows. 

A hierarchical file system with demountable volumes A 
Unix file system may be considered as a tree structure 
containing three types of node (Figure 2). 

• Ordinary files 
These can logically be regarded as one-dimensional 

arrays of characters. 
• Directories 

These are the branching points on the tree 
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structure. They contain the information necessary to 
map the names of the files immediately below them 
onto the files themselves. This information is in the 
form of a simple pointer which says where to find 
the disc block(s) belonging to the file. Because it is 
simply a pointer, an identical copy of the pointer can 
appear in another directory, which gives rise to the 
concept of a link, ie a single file with two entries 
in the directory structure. Directories are stored in 
the same way as ordinary files, but cannot be written 
to by unprivileged programs, so that the system 
controls their contents. 

• Special files 
These are the most unusual feature of the Unix 

file system. Each I/O device on the Unix system has 
an associated special file. These files can be read or 
written to just like an ordinary file, but the request 
results in activation of the specified device, causing 
data to be transferred without reference to any file 
system structure. Thus to write to a floppy disc, for 
example, one may write to the special file associated 
with the floppy disc drive exactly as if it were an 
ordinary Unix file. 

The root of the file system is the / or 'root' directory, 
and this directory is always held on a particular device 
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Figure 2. Unix hierarchical file system 

for a given Unix configuration. However, it is not 
necessary that the whole file system hierarchy should 
reside on that same device, and it is possible to mount 
other file systems on other devices below any empty 
directory on a file system. For example, the subtree 
below the /us r  directory is usually held on a separate 
logical device from the remainder of the tree, but when 
it is mounted as above, the fact that it is held on a 
separate device is completely transparent to the 
user. 

Compatible file, device and interprocess I / 0  All I /O 
calls have the same form whether they are to files, 
devices or other processes. The file is first opened by the 
open() system call 

fi lep = open(name, flag) 

where name may be an ordinary file, or the special file 
relating to the device to be opened, and flag indicates 
the mode required for the file (read/write/append/etc.). 
fi lep is a file descriptor used in all subsequent accesses 
to the file. 

f i lep can now be used as arguments to the read(), 
write() and other I /O system calls in place of the file 
name. 

If communicat ion is required with another process, 
the pipe() system call is used to obtain two file 
descriptors (one for writ ing to the pipe, and a second 
for reading from it) 

pipe(fielpr, f i lepw) 

Thus, a process will write to the pipe by writ ing to the 
f i lepw file descriptor, and another process can read 
from the pipe by reading from the fi lepr file descriptor. 

System command language selectable on a per user 
basis Communicat ion with the system is carried out 
by a command-l ine interpreter program, or shell. This is 

essentially a program capable of reading and executing 
commands from a terminal. The standard shell generally 
associated with Unix is the Bourne shell, but this is not 
hard wired into the system, and can easily be changed 
so that each user could have his/her own shell. For 
example, to allow users restricted access to a system, a 
shell could be devised to l imit the number of 
commands available to the user. A particular example 
of this could be to make a user whose shell was the 
chess program; anyone logging into this user could 
then have access only to the chess program. 

A wide range of software tools and compilers The 
Unix system includes a large number of programs 
useful to Unix users such as 
• system maintenance util it ies 
• program debuggers 
• text formatters 
• editors 

as well as c, FORTRAN and many other compilers. 

A high degree of portabil i ty The Unix kernel is almost 
entirely writ ten in the c programming language. This 
means that once a c compiler has been writ ten for a 
new CPU, the problem of porting Unix is a far simpler 
task than it would be for an assembler-written operating 
system. Furthermore, if the port has already been done 
to a particular CPU and memory management unit 
(MMU),  the task of adapting for a different disc or 
serial port becomes relatively straightforward. 

It is this portabi l i ty that has led to the  proliferation of 
Unix and its current availabil i ty on a large number of 
machines. 

The first version of Xenix was essentially AT&T Unix 
version 7 with many bugs fixed and the first Xenix 
enhancements, eg automatic file recovery (the file 
system is automatically checked and corrected on 
startup after asystem crash). This was fol lowed in 1982 
by Xenix 2.3 which included further Xenix enhance- 
ments such as record locking (which enables an 
arbitrary number of bytes at an arbitrary posit ion in a 
file to be locked) and semaphores (for improved inter- 
process communicat ion). 

More recently Xenix 3.0, based on AT&T Unix 
system III, has been introduced. This is a significantly 
improved version, in terms of both its usabil ity and its 
functionality. New features include better system 
administration utilities, the menu-driven visual shell, 
improved text processing facilities, and shared data. 

Microsoft has plans to produce a further version of 
Xenix compatible with Unix system V, although the 
exact nature of this product is as yet unreleased. 

A i m s  o f  X e n i x  

Whilst Unix has had a rather haphazard history during 
which litt le effort has been made towards making it a 
coherent commercial package, Xenix has always been 
aimed at the commercial user. In particular, all releases 
have been made upwards compatible, so for example 
all programs that run on Xenix 2.3 wil l run unmodif ied 
on Xenix 3.0 - -  this applies to binary as well as source 
programs. Xenix also forms part of an integrated 
product range Microsoft, and can be used in conjunction 
with other Microsoft products such as Windows and 
MS-DOS. 
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Finally Xenix aims to continue its domination of the 
Unix market (at present 77% of all installed Unix and 
Unix-like systems are Xenix), and expects to expand its 
present 70 000 installed systems to 250 000 by the 
end of 1985. 

W H A T  DOES XENIX REQUIRE FROM ITS 
HARDWARE? 

Ideal Xenix machines 

For Xenix to run successfully on a system, there are 
certain requirements of the hardware configuration 
some of which are necessary, and others simply desir- 
able. The following sections describe in general terms 
the requirements from each of the basic components 
of a computer system on which it is intended to run 
Xenix. 

CPU This must be able to run programs in two distinct 
modes: supervisor mode, in which no restrictions are 
placed on an executing program, and user mode, in 
which the following restrictions apply 

• certain instructions are not executable (eg the 
instruction to change between user and supervisor 
modes or any instructions related to interrupt 
handling) 

• the program is not permitted to access I/O devices 
(this may be implemented by the memory manage- 
ment unit) 

In the case of the Intel 8086 chip, supervisor/user 
modes are not implemented on chip and must be 
emulated by external hardware. 

It is necessary for the CPU to be able to access a 
physical address space of at least 512 kbytes (this is 
the minimum main memory requirement for Xenix 
3.0), plus any further addresses required to map I/O 
devices. 

The 68000 family fulfills both of these requirements, 
having 16 Mbytes of logical address space, all of which 
is directly accessible (many other chips have segmented 
architectures capable of easily accessing only 64 kbytes 
at a time). 

A desirable feature (especially for CPUs with limited 
direct addressing) is a set of output signals which 
enable the MMU to determine the type of memory 
access being performed. This enables the MMU to 
translate the addresses it receives differently for the 
four possible combinations of user data, user program, 
supervisor data and supervisor program. 

The interrupt handling on the CPU is also an 
important factor in the performance of the system. 
Although Xenix can be implemented on a system 
without interrupts from the I/O devices (provided 
there is a source of clock interrupts to the CPU), it is 
extremely inefficient. If the devices do not interrupt 
when they need to be serviced, Xenix must regularly 
poll them to determine their state. For serial lines, this 
means a very high rate of polling if the normal trans- 
mission rate of 9600 baud is to be maintained, and 
similarly the disc device must be polled regularly if 
it is to achieve a reasonable throughput. The process 
of polling devices is very wasteful of CPU time, and any 
system without interrupts will be extremely slow 

compared with a similar system operating with 
interrupts. 

MMU Essentially, the requirements of the memory 
management system are as follows 

• relocation - - t he  MMU must be able to relocate a 
program with fixed addresses anywhere in main 
memory 

• pro tect ion- - the MMU must be able to protect 
areas of memory from being accessed and, in 
particular, from being written to. Should an access 
be made to nonexistent or protected memory, the 
MMU should cause some sort of trap to be 
generated on the CPU. 

The MMU system will generally be set up so that when 
the CPU is running in user mode, the addresses output 
by the CPU will be mapped by one set of mapping 
registers, and when it is in supervisor mode, a second 
set of registers will be used. In both cases, a program 
executing in supervisor mode should have unrestricted 
access to all memory. The effect of this is to allow the 
Xenix kernel (which operates in supervisor mode) to 
access all memory, while the user programs running 
under Xenix (which run in user mode) can only access 
the memory allocated to them by the Xenix kernel. 

Main memory At least 512 kbytes of RAM are required 
for a Xenix 3.0 system. Xenix itself requires approx- 
imately 130 kbytes; the remainder is required to allow 
several processes to be simultaneously mapped, 
thereby helping to minimize swapping. 

Discs A 10 Mbyte hard disc is the minimum require- 
ment for a small Xenix system. The disc is divided into 
two distinct areas: the swap area (used to hold copies 
of processes whose execution has been suspended so 
they can be swapped out of main memory to make way 
for higher priority processes), and the Xenix file system 
area (this will be further subdivided on most systems) 
which holds the Xenix software and user programs. 

Backup device Some form of backup device is 
required if user and system files are to be protected 
against hardware or software malfunction. This will 
usually be a magnetic tape or floppy disc drive. 

ROM monitor Except for systems that are to have 
Xenix adapted to run on them (see the section on Xenix 
adaptions), the only requirements of a monitor are to 
be able to read and execute the primary bootstrap 
program (usually held on the first block of the main 
disc). This program will then cause Xenix to bootstrap 
itself into life. 

Memory management on Xenix 

At any one moment during normal use of a Xenix 
system, there exist in memory a number of user 
programs, or processes, at various stages of execution. 
In order that these processes can coexist without inter- 
fering with another, the memory management system 
must enforce strict protection to allow an active 
process access only to the limited region of memory 
assigned to it. Any accesses outside the allocated 
regions must be trapped and appropriate action taken 
according to the exact nature of the violation. 
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Pure text structure 

To understand why the memory management 
system works as it does it is first necessary to give some 
background of how Xenix structures its processes. The 
term process is used to describe a compi led and link- 
edited program together with the associated system 
table entries required to sustain the program as it runs. 
All programs that run under Xenix 68000 are structured 
in one of two ways. 

Normal executable Under this scheme the virtual 
address space for the program is split into two 
independent  regions: the first containing the program 
text and data for the program, and the second containing 
the stack (see Figure 3). 

Pure text Under this scheme, the virtual address 
space of a program is divided into three dist inct 
regions: the first containing the program text, the 
second containing the data and the third containing 
the stack (see Figure 4). 

The text segment is set to be 'read only' by the M M U  
so that it can be shared among a number of processes 
wi thout  danger of being corrupted. Thus for a 
commonly used program, such as the shell, only one copy 
of the text segment is held in main memory at any one 
time; after the first shell becomes active, all other 
instances of the shell wil l only require data and stack 
segments to be mapped, as they wil l share the first 
shell's text segment. 

The precise addresses at which these regions start 
may vary between different implementat ions of Xenix 
68000, but will be fixed for a particular implementation. 

Under Xenix both the stack and the data regions can 
be grown beyond their  initial allocation. In the case of 
the stack, the growth occurs automatical ly when the 

bounds of the allocated stack are exceeded. The data 
region, however, can be grown by user processes using 
a system call to the Xenix kernel. 

The facility that enables Xenix to grow these 
program regions is provided by the M M U  system and 
an example of how this works follows. 

First consider an example of how Xenix maps the 
logical address space of a process onto physical 
memory. Figure 5 shows two processes A and B on the 
left, and on the right are shown the positions of the 
regions which comprise the processes as they are 
mapped in physical memory. Note that the regions are 
fairly well scattered around physical memory, which 
wil l generally be the case on a system with a normal 
mult iuser workload. For the purposes of this example it 
has been assumed that each region belonging to a 
process is contiguously m a p p e d -  we shall see later 
that this is not always necessary. To illustrate the 
problem of growth, we shall consider how each region 
grows its stack. 

Process A wil l make a stack reference below the 
base address of its stack region (eg as a result of a c 
subroutine call). This will be detected as an invalid 
reference by the MMU,  causing a trap which suspends 
the user process and switches the CPU to supervisor 
mode. On discovering that the reference was below 
the stack (a valid way to grow the stack), Xenix wil l first 
check whether the physical memory below the currently 
allocated stack region is free. In this case it is, so Xenix 
wil l allocate a further chunk of memory from the 
current top-of-stack position to a suitable point below 
the referenced address to allow for further growth. 
When the memory management has been set up to 
map this new larger region, the trap can be terminated 
and the user process resumed. 

If the same thing happens to process B however, 
Xenix wil l discover that the memory immediately 
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below the current stack is in use (by process A). In this 
case, the only way to grow is to swap out the stack 
region onto the swap disc, allocate a new larger region 
(say below the Text and data region for process 13), and 
swap that stack area back into the new larger region, 
continuing execution from there. 

The exact method by which Xenix maps its 
processes depends on the MMU in question. For the 
purposes of this document, we shall consider the two 
most common MMU systems in use on 68000 Xenix 
systems which implement the two basically different 
approaches to memory management. These are the 
MC68451 MMU which implements a segmented 
scheme, and the paged MMU scheme (an example of 
which is used on the Sun 68000 board). 

S e g m e n t e d  s c h e m e  u s i n g  t h e  M C 6 8 4 5 1  M M U  

The 68451 MMU is capable of mapping segments of 
memory which are powers of 2 in size, with a minimum 
segment size of 256 bytes. Each MMU has 32 descrip- 
tors, each of which can be programmed to map a 
logical segment of size 2 n (which must start on a logical 
boundary which is itself a multiple of 2 n) to a physical 
segment of the same size starting at any physical 
address which is also on a boundary which is a multiple 
of 2 n. Although these restrictions may seem to be fairly 
severe, in practice there is a scheme which makes 
reasonably efficient use of the MMU. This scheme is 
known as the 'buddy' system and works as follows. 

Physical memory is divided into a number of equally 
sized pages. Let us assume that these pages are 
2 kbytes in size. 

Looking at Figure 6 we can see that memory can be 
divided up into pairs of pages, or buddies. Each pair of 
buddies can be merged to form a single unit, which will 
in turn have a buddy. 

This process of merging buddies continues until all 
memory has been accounted for by a few (usually one 
or two) large segments. For a 768 kbyte main memory 
when all possible buddies have been merged, for 
example, there will be one 512 kbyte segment and one 
256 kbyte unit. 

As memory is used, these large segments become 
split into their constituent buddies and the free 
segments released are kept on free lists, one for each 
size of segment. So for the above example we would 
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To allocate a region of size 2 n, we must first search 
the free-segment list for a segment of that size. If no 
such segment exists, we look for a segment of size 
2 n ÷ 1. If we find one, it can be split into its two buddies, 
each of size 2 n. One can be used, and the second 
returned to the free list for segments of size 2 n. 

Had we had not been able to find a segment of size 
2 n+l, we could have tried to find a segment of size 
2 n + 2 and split that down to the required 2 n segment. 

If we reach the maximum-segment-size free list and 
find it empty still without having found the required 
segment free, we must swap out a process, free its 
memory (merging any buddies if possible), and try 
again. Provided there are large enough segments to 
map a process when all memory has been freed (apart 
of course from the memory occupied by Xenix itself), 
then we shall always be able to map a process in 
this manner. 

The problem with this system is that it requires a 
fairly clever algorithm to make best use of free memory 
and, however well they are implemented, a lot of CPU 
time can be used in deciding the best way to map a 
process. Conversely, if the algorithm is too simple, 
memory will be wasted resulting in excessive swapping. 

Having said this, the system does work well in practice. 
It also has the distinct advantage of being a standard 
MMU on one chip. This makes implementing Xenix on 
a system with a 68451 far simpler than if a nonstandard 
MMU is used. 

P a g e d  m e m o r y  m a n a g e m e n t  

The paged system of memory management overcomes 
the problem of memory fragmentation and can be 
implemented with much simpler software. The basic 
principle is as follows. 

Memory is divided into a number of equally sized 
pages, say for example 2 kbyte pages. These pages are 
maintained on a single free list, or they are attached to 
a list belonging to the process to which they are 
allocated. 

The logical address space too is divided up into 
2 kbyte pages, and each logical page can be mapped 
onto any physical page by means of a set of mapping 
registers - -  one for each page in logical memory. These 
registers are usually in very fast RAM to minimize the 
overhead of mapping pages. 

The problem of allocating memory in this system is 
far easier than in the segmented scheme. We simply 
take as many pages from the free list as are required. If 
there are not enough pages available, a low-priority 
process can be swapped out and its pages returned to 
the free list, making them available for the process 
requiring memory. 

X e n i x  d i s c  s y s t e m  

As stated before, a Xenix disc performs two separate 
functions and is consequently divided into two logically 
separate regions. The first region is reserved for Xenix 
file systems, and the second is used for swapping. 
Because of their different functions, each region 
demands different qualities from the disc. 

354 microprocessors and microsystems 



The swap area is usually accessed in a sequential 
manner with mult ip le sector transfers being the norm. 
Consequent ly a high transfer rate is desirable to 
opt imize swapping. 

The Xenix file system, however, is structured in such 
a way that the reading of a file can require several 
reads, none of which is l ikely to be in consecutive 
blocks. As a result, a fast seek t ime is desirable to obtain 
the best performance for this area. 

Xenix 68000 regards its discs as a sequence of directly 
addressable 512 byte blocks. The disc controller should 
ideally be capable of init iating a read or write on a 
block with a single command, ie the control ler should 
implement implied seeks. 

Ideally the control ler wil l also be able to perform 
direct memory access (DMA). This saves part of the 
t ime required to transfer blocks between memory and 
the disc control ler (although the bus wil l still be taken 
up while the copy is in progress). 

IMPLEMENTING XENIX 

Extra requirements for Xenix adaptations 

To adapt Xenix to a new machine, there are a number 
of addit ional requirements to those stated in the 
previous section. 

The only hardware requirement is that there must 
be at least two serial ports on the system. The first must 
be configured as the console device for communication 
with the monitor (and eventual ly Xenix), and the 
second must be configured as a serial l ink to the host 
computer which is used to develop, compile and 
download prototype Xenix kernels to the target machine. 

From the software angle, the machine must be 
provided with a reasonably sophisticated ROM 
monitor program which must incorporate at least the 
fol lowing abilit ies 

• to read data (ie programs) sent from the host down 
the serial link, and to transfer it to any given 
memory location 

• to display and alter memory 
• to display and modify the CPU's registers 

The fol lowing features are required to make debugging 
simpler 

• a method of setting breakpoints 
• a monitor command to read and write a specified 

number of blocks between main memory and a 
specified section of the disc 

• the abil i ty to trace the execution path of a program 
over a specified number of instructions 

• a disassembler 

All the above features are provided by the VERSAbug 
monitor which is supplied as part of the Motorola 
VERSAmodule board. 

Some interesting Xenix adaptations 

The final part of this discussion is devoted to out l in ing a 
few of the Xenix 68000 adaptations that Logica has 
done over the last year. 

Eagle 

This system is a 68000-based single-user system 
aimed at the office market. The memory management 
system is of the paged variety, and the discs used are a 
small (10 Mbyte) Winchester and a 51/4-in f loppy 
drive. 

The interesting feature of this system is that all 
accesses to the I/O devices and the memory manage- 
ment system are performed via calls to a set of monitor 
routines. Consequent ly the resultant Xenix system is 
independent of the exact hardware on which it runs 
provided the monitor interface to the devices is the 
same. 

Fix 

This is also a single-user system which has a similar 
principle of accessing devices by means of monitor 
calls. However, the CPU is a 68010, the M M U  is a 
68451, and the application is rather unusual for a 
Xenix system. It is used as a host system to monitor and 
control an intel l igent subsystem which automatical ly 
performs chemical analysis of various substances. 

The host system automatically downloads the 
control programs to the subsystem, waits for the 
analysis to be completed, and then processes the 
results of the analysis producing a printed report. The 
advantage of having Xenix on the host system is that it 
provides an ideal environment for maintaining and 
developing the programs used to perform the analysis. 

Beta 

This is a high-performance dual-processor system 
aimed at the general commercial market. It features a 
t ightly coupled 68010/68000 pair of CPUs with two 
68451 MMUs and a 16081 floating point processor. 

The 68010 is the main processor and runs a specially 
adapted version of Xenix, whilst the 68000 is the I /O 
processor (see Figure 7). The I/O processor runs a 
custom-bui l t  multitasking system consisting of a 
control task and a number of device driver tasks which 
compete cooperatively for the CPU. 

All the external devices (except for a hexadecimal 
LED display used for diagnostic purposes) are connected 
to the I/O processor, and the two processors 
communicate by a combinat ion of shared memory and 
interprocessor interrupts. 
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Figure 7. Beta dual-processor system 
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Brutus 

This is also a dual-processor system aimed at a similar 
market to Beta and is produced by Sagem (the largest 
non-state-owned electronics company in France). The 
main differences are in the way in which the two 
processors communicate and in the function of each 
processor. The main processor (a 68010 with 68451 
MMU) drives 'most of the I /0  devices (disc, tape, 
floppy and two serial lines), and the I I 0  processor 
handles the rest of the terminal lines. Interprocessor 
communication is achieved by a simple interface 

which allows the main processor to pass characters to 
and from the terminals attached to the I /0  processor. 

CONCLUSIONS 

Processors in the Motorola 68000 series are cheap, and 
are available in large quantities. Leaving aside the 
competition from the Intel 80286 and National 
Semiconductor 32000 series, the 68000/68010 
processors provide the best basis for a fast and efficient 
Xenix implementation. 
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