
Xenix and the Motorola
68000 family

Bill Bateson looks at Xenix and Xenix 68000

The main features of the Xenix time-sharing system are
discussed, paying particular attention to those aspects
of the operating system which relate most closely to
the hardware on which the system is running. In
particular the architecture of the CPU, the memory
management hardware, and the disc system are
discussed.

microsystems Unix memory management

WHAT IS XENIX?

Xenix family tree

Xenix is an enhanced version of the Unix time-sharing
system, and its relationship to Unix can best be illus-
trated by means of a family tree (Figure 1).

Unix itself was first written and implemented by Ken
Thompson (of Bell Labs) on DEC PDP 7 in 1969. His
motivation to write the system was a general dissatis-
faction with the available computer facilities. With
Unix, he aimed to produce a system that provided a
powerful development environment for programmers
geared towards interactive use. This first attempt was
successful enough to gain the interest of the second
godfather of Unix, Dennis M Ritchie. Between them,
they developed Unix from its first single-user version
to the commonly available multiuser system.

The essential features of Unix are as follows.

A hierarchical file system with demountable volumes A
Unix file system may be considered as a tree structure
containing three types of node (Figure 2).

• Ordinary files
These can logically be regarded as one-dimensional

arrays of characters.
• Directories

These are the branching points on the tree

Software Products Group, Logica UK Ltd, 64 Newman Street,
London Wl , UK
Presented at Applying the 68000 family, City Conference Centre,
London, UK, 30 October 1984

Bill Bateson is a systems
programmer in the software
products group of UK firm
Logica. He started his career
in the computing industry
in 1979 with SPL Inter-
national working on reactor
simulation programs for
the UK Atomic Energy
Authority. Bateson is a
graduate of Bristol University,
UK, with a degree in math-

ematics and computing science. He is currently
engaged in adapting Xenix to run on various 68000-
based microsystems.

structure. They contain the information necessary to
map the names of the files immediately below them
onto the files themselves. This information is in the
form of a simple pointer which says where to find
the disc block(s) belonging to the file. Because it is
simply a pointer, an identical copy of the pointer can
appear in another directory, which gives rise to the
concept of a link, ie a single file with two entries
in the directory structure. Directories are stored in
the same way as ordinary files, but cannot be written
to by unprivileged programs, so that the system
controls their contents.

• Special files
These are the most unusual feature of the Unix

file system. Each I/O device on the Unix system has
an associated special file. These files can be read or
written to just like an ordinary file, but the request
results in activation of the specified device, causing
data to be transferred without reference to any file
system structure. Thus to write to a floppy disc, for
example, one may write to the special file associated
with the floppy disc drive exactly as if it were an
ordinary Unix file.

The root of the file system is the / or 'root' directory,
and this directory is always held on a particular device

0141-9331/84/07350-07 $03.00 © 1984 Butterworth & Co. (Publishers) Ltd

350 microprocessors and microsystems

UNIX

I
I

UNIX Verslon 6

I
I

UNIX VersLon T

I
................ + +

UNIX S y s t e m I I I < >

I I
I I

UNIX System V <---> XENIX 3.0

I
I

XENIX 5.0

Figure 1. Xenix family tree

I
XENIX 2.0

I
XENIX 2 . 2

I
XENIX 2 . 3

t
XENIX Z .9

I

/ \
spool bin sh init root f console

Figure 2. Unix hierarchical file system

for a given Unix configuration. However, it is not
necessary that the whole file system hierarchy should
reside on that same device, and it is possible to mount
other file systems on other devices below any empty
directory on a file system. For example, the subtree
below the /us r directory is usually held on a separate
logical device from the remainder of the tree, but when
it is mounted as above, the fact that it is held on a
separate device is completely transparent to the
user.

Compatible file, device and interprocess I / 0 All I /O
calls have the same form whether they are to files,
devices or other processes. The file is first opened by the
open() system call

fi lep = open(name, flag)

where name may be an ordinary file, or the special file
relating to the device to be opened, and flag indicates
the mode required for the file (read/write/append/etc.).
fi lep is a file descriptor used in all subsequent accesses
to the file.

f i lep can now be used as arguments to the read(),
write() and other I /O system calls in place of the file
name.

If communicat ion is required with another process,
the pipe() system call is used to obtain two file
descriptors (one for writ ing to the pipe, and a second
for reading from it)

pipe(fielpr, f i lepw)

Thus, a process will write to the pipe by writ ing to the
f i lepw file descriptor, and another process can read
from the pipe by reading from the fi lepr file descriptor.

System command language selectable on a per user
basis Communicat ion with the system is carried out
by a command-l ine interpreter program, or shell. This is

essentially a program capable of reading and executing
commands from a terminal. The standard shell generally
associated with Unix is the Bourne shell, but this is not
hard wired into the system, and can easily be changed
so that each user could have his/her own shell. For
example, to allow users restricted access to a system, a
shell could be devised to l imit the number of
commands available to the user. A particular example
of this could be to make a user whose shell was the
chess program; anyone logging into this user could
then have access only to the chess program.

A wide range of software tools and compilers The
Unix system includes a large number of programs
useful to Unix users such as
• system maintenance util it ies
• program debuggers
• text formatters
• editors

as well as c, FORTRAN and many other compilers.

A high degree of portabil i ty The Unix kernel is almost
entirely writ ten in the c programming language. This
means that once a c compiler has been writ ten for a
new CPU, the problem of porting Unix is a far simpler
task than it would be for an assembler-written operating
system. Furthermore, if the port has already been done
to a particular CPU and memory management unit
(MMU), the task of adapting for a different disc or
serial port becomes relatively straightforward.

It is this portabi l i ty that has led to the proliferation of
Unix and its current availabil i ty on a large number of
machines.

The first version of Xenix was essentially AT&T Unix
version 7 with many bugs fixed and the first Xenix
enhancements, eg automatic file recovery (the file
system is automatically checked and corrected on
startup after asystem crash). This was fol lowed in 1982
by Xenix 2.3 which included further Xenix enhance-
ments such as record locking (which enables an
arbitrary number of bytes at an arbitrary posit ion in a
file to be locked) and semaphores (for improved inter-
process communicat ion).

More recently Xenix 3.0, based on AT&T Unix
system III, has been introduced. This is a significantly
improved version, in terms of both its usabil ity and its
functionality. New features include better system
administration utilities, the menu-driven visual shell,
improved text processing facilities, and shared data.

Microsoft has plans to produce a further version of
Xenix compatible with Unix system V, although the
exact nature of this product is as yet unreleased.

A i m s o f X e n i x

Whilst Unix has had a rather haphazard history during
which litt le effort has been made towards making it a
coherent commercial package, Xenix has always been
aimed at the commercial user. In particular, all releases
have been made upwards compatible, so for example
all programs that run on Xenix 2.3 wil l run unmodif ied
on Xenix 3.0 - - this applies to binary as well as source
programs. Xenix also forms part of an integrated
product range Microsoft, and can be used in conjunction
with other Microsoft products such as Windows and
MS-DOS.

vol 8 no 7 september 1984 351

Finally Xenix aims to continue its domination of the
Unix market (at present 77% of all installed Unix and
Unix-like systems are Xenix), and expects to expand its
present 70 000 installed systems to 250 000 by the
end of 1985.

W H A T DOES XENIX REQUIRE FROM ITS
HARDWARE?

Ideal Xenix machines

For Xenix to run successfully on a system, there are
certain requirements of the hardware configuration
some of which are necessary, and others simply desir-
able. The following sections describe in general terms
the requirements from each of the basic components
of a computer system on which it is intended to run
Xenix.

CPU This must be able to run programs in two distinct
modes: supervisor mode, in which no restrictions are
placed on an executing program, and user mode, in
which the following restrictions apply

• certain instructions are not executable (eg the
instruction to change between user and supervisor
modes or any instructions related to interrupt
handling)

• the program is not permitted to access I/O devices
(this may be implemented by the memory manage-
ment unit)

In the case of the Intel 8086 chip, supervisor/user
modes are not implemented on chip and must be
emulated by external hardware.

It is necessary for the CPU to be able to access a
physical address space of at least 512 kbytes (this is
the minimum main memory requirement for Xenix
3.0), plus any further addresses required to map I/O
devices.

The 68000 family fulfills both of these requirements,
having 16 Mbytes of logical address space, all of which
is directly accessible (many other chips have segmented
architectures capable of easily accessing only 64 kbytes
at a time).

A desirable feature (especially for CPUs with limited
direct addressing) is a set of output signals which
enable the MMU to determine the type of memory
access being performed. This enables the MMU to
translate the addresses it receives differently for the
four possible combinations of user data, user program,
supervisor data and supervisor program.

The interrupt handling on the CPU is also an
important factor in the performance of the system.
Although Xenix can be implemented on a system
without interrupts from the I/O devices (provided
there is a source of clock interrupts to the CPU), it is
extremely inefficient. If the devices do not interrupt
when they need to be serviced, Xenix must regularly
poll them to determine their state. For serial lines, this
means a very high rate of polling if the normal trans-
mission rate of 9600 baud is to be maintained, and
similarly the disc device must be polled regularly if
it is to achieve a reasonable throughput. The process
of polling devices is very wasteful of CPU time, and any
system without interrupts will be extremely slow

compared with a similar system operating with
interrupts.

MMU Essentially, the requirements of the memory
management system are as follows

• relocation - - t he MMU must be able to relocate a
program with fixed addresses anywhere in main
memory

• pro tect ion- - the MMU must be able to protect
areas of memory from being accessed and, in
particular, from being written to. Should an access
be made to nonexistent or protected memory, the
MMU should cause some sort of trap to be
generated on the CPU.

The MMU system will generally be set up so that when
the CPU is running in user mode, the addresses output
by the CPU will be mapped by one set of mapping
registers, and when it is in supervisor mode, a second
set of registers will be used. In both cases, a program
executing in supervisor mode should have unrestricted
access to all memory. The effect of this is to allow the
Xenix kernel (which operates in supervisor mode) to
access all memory, while the user programs running
under Xenix (which run in user mode) can only access
the memory allocated to them by the Xenix kernel.

Main memory At least 512 kbytes of RAM are required
for a Xenix 3.0 system. Xenix itself requires approx-
imately 130 kbytes; the remainder is required to allow
several processes to be simultaneously mapped,
thereby helping to minimize swapping.

Discs A 10 Mbyte hard disc is the minimum require-
ment for a small Xenix system. The disc is divided into
two distinct areas: the swap area (used to hold copies
of processes whose execution has been suspended so
they can be swapped out of main memory to make way
for higher priority processes), and the Xenix file system
area (this will be further subdivided on most systems)
which holds the Xenix software and user programs.

Backup device Some form of backup device is
required if user and system files are to be protected
against hardware or software malfunction. This will
usually be a magnetic tape or floppy disc drive.

ROM monitor Except for systems that are to have
Xenix adapted to run on them (see the section on Xenix
adaptions), the only requirements of a monitor are to
be able to read and execute the primary bootstrap
program (usually held on the first block of the main
disc). This program will then cause Xenix to bootstrap
itself into life.

Memory management on Xenix

At any one moment during normal use of a Xenix
system, there exist in memory a number of user
programs, or processes, at various stages of execution.
In order that these processes can coexist without inter-
fering with another, the memory management system
must enforce strict protection to allow an active
process access only to the limited region of memory
assigned to it. Any accesses outside the allocated
regions must be trapped and appropriate action taken
according to the exact nature of the violation.

352 microprocessors and microsystems

FFFFFF

/ F F F F F

0

Figure 3.

STACK

DATA
&

TEXT

can g r o w in th is di rec t ion

I
I can g r o w in this direction

I
I

Normal executable structure

FFFFFF

/ F F F F F

0

Figure 4.

TEXT

STACK

I
DATA I

I I
. + I

c a n g r o w in this direction

can g r o w in this d i rec t ion

Pure text structure

To understand why the memory management
system works as it does it is first necessary to give some
background of how Xenix structures its processes. The
term process is used to describe a compi led and link-
edited program together with the associated system
table entries required to sustain the program as it runs.
All programs that run under Xenix 68000 are structured
in one of two ways.

Normal executable Under this scheme the virtual
address space for the program is split into two
independent regions: the first containing the program
text and data for the program, and the second containing
the stack (see Figure 3).

Pure text Under this scheme, the virtual address
space of a program is divided into three dist inct
regions: the first containing the program text, the
second containing the data and the third containing
the stack (see Figure 4).

The text segment is set to be 'read only' by the M M U
so that it can be shared among a number of processes
wi thout danger of being corrupted. Thus for a
commonly used program, such as the shell, only one copy
of the text segment is held in main memory at any one
time; after the first shell becomes active, all other
instances of the shell wil l only require data and stack
segments to be mapped, as they wil l share the first
shell's text segment.

The precise addresses at which these regions start
may vary between different implementat ions of Xenix
68000, but will be fixed for a particular implementation.

Under Xenix both the stack and the data regions can
be grown beyond their initial allocation. In the case of
the stack, the growth occurs automatical ly when the

bounds of the allocated stack are exceeded. The data
region, however, can be grown by user processes using
a system call to the Xenix kernel.

The facility that enables Xenix to grow these
program regions is provided by the M M U system and
an example of how this works follows.

First consider an example of how Xenix maps the
logical address space of a process onto physical
memory. Figure 5 shows two processes A and B on the
left, and on the right are shown the positions of the
regions which comprise the processes as they are
mapped in physical memory. Note that the regions are
fairly well scattered around physical memory, which
wil l generally be the case on a system with a normal
mult iuser workload. For the purposes of this example it
has been assumed that each region belonging to a
process is contiguously m a p p e d - we shall see later
that this is not always necessary. To illustrate the
problem of growth, we shall consider how each region
grows its stack.

Process A wil l make a stack reference below the
base address of its stack region (eg as a result of a c
subroutine call). This will be detected as an invalid
reference by the MMU, causing a trap which suspends
the user process and switches the CPU to supervisor
mode. On discovering that the reference was below
the stack (a valid way to grow the stack), Xenix wil l first
check whether the physical memory below the currently
allocated stack region is free. In this case it is, so Xenix
wil l allocate a further chunk of memory from the
current top-of-stack position to a suitable point below
the referenced address to allow for further growth.
When the memory management has been set up to
map this new larger region, the trap can be terminated
and the user process resumed.

If the same thing happens to process B however,
Xenix wil l discover that the memory immediately

FFFFF

IFFFF

FFFFF

7FFFF

TEXT

STACK

DATA

PFocess A

STACK

TEXT & DATA

PTocess B

DATA A

STACK B

STACK A

TEXT A

TEXT & DATA B

Ma in
Memory

Figure 5. Xenix mapping logical address space onto
physical memory

vol 8 no 7 september 1984 353

below the current stack is in use (by process A). In this
case, the only way to grow is to swap out the stack
region onto the swap disc, allocate a new larger region
(say below the Text and data region for process 13), and
swap that stack area back into the new larger region,
continuing execution from there.

The exact method by which Xenix maps its
processes depends on the MMU in question. For the
purposes of this document, we shall consider the two
most common MMU systems in use on 68000 Xenix
systems which implement the two basically different
approaches to memory management. These are the
MC68451 MMU which implements a segmented
scheme, and the paged MMU scheme (an example of
which is used on the Sun 68000 board).

S e g m e n t e d s c h e m e u s i n g t h e M C 6 8 4 5 1 M M U

The 68451 MMU is capable of mapping segments of
memory which are powers of 2 in size, with a minimum
segment size of 256 bytes. Each MMU has 32 descrip-
tors, each of which can be programmed to map a
logical segment of size 2 n (which must start on a logical
boundary which is itself a multiple of 2 n) to a physical
segment of the same size starting at any physical
address which is also on a boundary which is a multiple
of 2 n. Although these restrictions may seem to be fairly
severe, in practice there is a scheme which makes
reasonably efficient use of the MMU. This scheme is
known as the 'buddy' system and works as follows.

Physical memory is divided into a number of equally
sized pages. Let us assume that these pages are
2 kbytes in size.

Looking at Figure 6 we can see that memory can be
divided up into pairs of pages, or buddies. Each pair of
buddies can be merged to form a single unit, which will
in turn have a buddy.

This process of merging buddies continues until all
memory has been accounted for by a few (usually one
or two) large segments. For a 768 kbyte main memory
when all possible buddies have been merged, for
example, there will be one 512 kbyte segment and one
256 kbyte unit.

As memory is used, these large segments become
split into their constituent buddies and the free
segments released are kept on free lists, one for each
size of segment. So for the above example we would

11 1~ 13 19 have a free list for segments of size 2 ,2 ,2 2 .

I I I
16k + * - *

I I I
14k * + [budd ies

I I r
12k + ~ -+

I I I
1OR + * [buddzes

I I I
8k + *

I t I
5k * * [budd ies

I I I
4k * + - *

I I I
2k ÷ + [budd ies

l I I
0 ~ + -+

I
- ÷

hudd les

budd ies

Figure 6. Memory divided into 'buddies"

buddzes

To allocate a region of size 2 n, we must first search
the free-segment list for a segment of that size. If no
such segment exists, we look for a segment of size
2 n ÷ 1. If we find one, it can be split into its two buddies,
each of size 2 n. One can be used, and the second
returned to the free list for segments of size 2 n.

Had we had not been able to find a segment of size
2 n+l, we could have tried to find a segment of size
2 n + 2 and split that down to the required 2 n segment.

If we reach the maximum-segment-size free list and
find it empty still without having found the required
segment free, we must swap out a process, free its
memory (merging any buddies if possible), and try
again. Provided there are large enough segments to
map a process when all memory has been freed (apart
of course from the memory occupied by Xenix itself),
then we shall always be able to map a process in
this manner.

The problem with this system is that it requires a
fairly clever algorithm to make best use of free memory
and, however well they are implemented, a lot of CPU
time can be used in deciding the best way to map a
process. Conversely, if the algorithm is too simple,
memory will be wasted resulting in excessive swapping.

Having said this, the system does work well in practice.
It also has the distinct advantage of being a standard
MMU on one chip. This makes implementing Xenix on
a system with a 68451 far simpler than if a nonstandard
MMU is used.

P a g e d m e m o r y m a n a g e m e n t

The paged system of memory management overcomes
the problem of memory fragmentation and can be
implemented with much simpler software. The basic
principle is as follows.

Memory is divided into a number of equally sized
pages, say for example 2 kbyte pages. These pages are
maintained on a single free list, or they are attached to
a list belonging to the process to which they are
allocated.

The logical address space too is divided up into
2 kbyte pages, and each logical page can be mapped
onto any physical page by means of a set of mapping
registers - - one for each page in logical memory. These
registers are usually in very fast RAM to minimize the
overhead of mapping pages.

The problem of allocating memory in this system is
far easier than in the segmented scheme. We simply
take as many pages from the free list as are required. If
there are not enough pages available, a low-priority
process can be swapped out and its pages returned to
the free list, making them available for the process
requiring memory.

X e n i x d i s c s y s t e m

As stated before, a Xenix disc performs two separate
functions and is consequently divided into two logically
separate regions. The first region is reserved for Xenix
file systems, and the second is used for swapping.
Because of their different functions, each region
demands different qualities from the disc.

354 microprocessors and microsystems

The swap area is usually accessed in a sequential
manner with mult ip le sector transfers being the norm.
Consequent ly a high transfer rate is desirable to
opt imize swapping.

The Xenix file system, however, is structured in such
a way that the reading of a file can require several
reads, none of which is l ikely to be in consecutive
blocks. As a result, a fast seek t ime is desirable to obtain
the best performance for this area.

Xenix 68000 regards its discs as a sequence of directly
addressable 512 byte blocks. The disc controller should
ideally be capable of init iating a read or write on a
block with a single command, ie the control ler should
implement implied seeks.

Ideally the control ler wil l also be able to perform
direct memory access (DMA). This saves part of the
t ime required to transfer blocks between memory and
the disc control ler (although the bus wil l still be taken
up while the copy is in progress).

IMPLEMENTING XENIX

Extra requirements for Xenix adaptations

To adapt Xenix to a new machine, there are a number
of addit ional requirements to those stated in the
previous section.

The only hardware requirement is that there must
be at least two serial ports on the system. The first must
be configured as the console device for communication
with the monitor (and eventual ly Xenix), and the
second must be configured as a serial l ink to the host
computer which is used to develop, compile and
download prototype Xenix kernels to the target machine.

From the software angle, the machine must be
provided with a reasonably sophisticated ROM
monitor program which must incorporate at least the
fol lowing abilit ies

• to read data (ie programs) sent from the host down
the serial link, and to transfer it to any given
memory location

• to display and alter memory
• to display and modify the CPU's registers

The fol lowing features are required to make debugging
simpler

• a method of setting breakpoints
• a monitor command to read and write a specified

number of blocks between main memory and a
specified section of the disc

• the abil i ty to trace the execution path of a program
over a specified number of instructions

• a disassembler

All the above features are provided by the VERSAbug
monitor which is supplied as part of the Motorola
VERSAmodule board.

Some interesting Xenix adaptations

The final part of this discussion is devoted to out l in ing a
few of the Xenix 68000 adaptations that Logica has
done over the last year.

Eagle

This system is a 68000-based single-user system
aimed at the office market. The memory management
system is of the paged variety, and the discs used are a
small (10 Mbyte) Winchester and a 51/4-in f loppy
drive.

The interesting feature of this system is that all
accesses to the I/O devices and the memory manage-
ment system are performed via calls to a set of monitor
routines. Consequent ly the resultant Xenix system is
independent of the exact hardware on which it runs
provided the monitor interface to the devices is the
same.

Fix

This is also a single-user system which has a similar
principle of accessing devices by means of monitor
calls. However, the CPU is a 68010, the M M U is a
68451, and the application is rather unusual for a
Xenix system. It is used as a host system to monitor and
control an intel l igent subsystem which automatical ly
performs chemical analysis of various substances.

The host system automatically downloads the
control programs to the subsystem, waits for the
analysis to be completed, and then processes the
results of the analysis producing a printed report. The
advantage of having Xenix on the host system is that it
provides an ideal environment for maintaining and
developing the programs used to perform the analysis.

Beta

This is a high-performance dual-processor system
aimed at the general commercial market. It features a
t ightly coupled 68010/68000 pair of CPUs with two
68451 MMUs and a 16081 floating point processor.

The 68010 is the main processor and runs a specially
adapted version of Xenix, whilst the 68000 is the I /O
processor (see Figure 7). The I/O processor runs a
custom-bui l t multitasking system consisting of a
control task and a number of device driver tasks which
compete cooperatively for the CPU.

All the external devices (except for a hexadecimal
LED display used for diagnostic purposes) are connected
to the I/O processor, and the two processors
communicate by a combinat ion of shared memory and
interprocessor interrupts.

. I s 8 o i o I
I LED D i s p l a y] I 1 - - - +
. [P r o c e s s o r I]

I I I
, , l

I I
I I I

i n t e r r u p t s + - - -

I I I
v I I

I oisk I I I I
* * I 6 e O 0 O I I

I I
. I P r o c e s s o r L
l S e r i a l l i n e s I I I - - - *

* + * * I
I
I

I F l o p p y OJ. s k [
* ÷

H a i n

M e m o r y

1 , +

I I I
* - - - ~ [0 P H e m o r y I

[I

Figure 7. Beta dual-processor system

vol 8 no 7 september 1984 355

Brutus

This is also a dual-processor system aimed at a similar
market to Beta and is produced by Sagem (the largest
non-state-owned electronics company in France). The
main differences are in the way in which the two
processors communicate and in the function of each
processor. The main processor (a 68010 with 68451
MMU) drives 'most of the I /0 devices (disc, tape,
floppy and two serial lines), and the I I 0 processor
handles the rest of the terminal lines. Interprocessor
communication is achieved by a simple interface

which allows the main processor to pass characters to
and from the terminals attached to the I /0 processor.

CONCLUSIONS

Processors in the Motorola 68000 series are cheap, and
are available in large quantities. Leaving aside the
competition from the Intel 80286 and National
Semiconductor 32000 series, the 68000/68010
processors provide the best basis for a fast and efficient
Xenix implementation.

356 microprocessors and microsystems

