
AR-21 1

An optimized loop mode of operation substantially improves
a microprocessor's throughput while retaining full compatibility
with its predecessor's software.

Built-in tight-loop mode
raises pP's performance

proved performance need to be program-compatible
with existing family members. With this con-
straint, upgrading requires that the new unit be

designed with minimal change to the internal
micromachine-generally imposing a severe lim-
itation on the improvements that can be made.

One change, however, that does not affect the
compatibility of the 68000 with its more powerful
68010 upgrade but that still dramatically improves
performance is a built-in automatic method of ef-
ficiently executing "tight loops." The method's
elegance and generality make it particularly appro-
priate: a less general solution would have been glar-
ingly inconsistent with the powerful instructions,
addressing modes, and word sizes available in the
68000 microprocessor family. The 68010's hardware
and instruction set are basically the same as the
68000's except for the 68010's enhancements for im-
plementing virtual-memory and virtual-machine
systems; two new general-purpose data-moving in-
structions; and of course, the tight-loop mode of
operation.

Looping is an operation heavily associated with
branching-an extensively used microprocessor
function. When an instruction sequence branches a

very short distance from a particular (or the cur-
rent) location in the sequence and returns to that
location, the instuction sequence is called a tight
loop. More specifically, the 68010 automatically

Douglat tlacGregot, Microcomponent Design Engineer
Bill llolet, Microcomponent Design Engineer
Motorola lnc.
3501 Ed Bluestein Blvd., Austin, Texas 78721

When a microprocessor
family becomes widely es-

tablished and its users have
made a large investment in
software, new members in
the family offering im-

recognizes a tight-loop se-
quence when the destina-
tion of the branch instruc-
tion falls within the length
of the processor's instruc-
tion pipeline -a displace-

ment value of - 4. The 68010 instruction pipeline,
like that of the 68000, overlaps the fetching of suc-
ceeding instructions with decoding and executing
the current instruction.

The tight loop method is transparent to the user,
because the instruction stream requires no modi-
fication. The processor merely interprets the
situation-certainly a most compatible method of

1. The loop example (a) compares memory values Ar and
Ar. Becaute the deetination of the loop's conditional-
branching-with-counter (D8"") operation lalls within the
lcngth ol the ingtruction pipe (b)-a displacement ol -4-it
is congidered to be a tight loop.

CMPM (Ar)+, (A,)*

lnstruction
register

control (lBC)

lnstruction

(rRD)

lnstruction
register (lR)

Execution unit

(b)

enhancing performance. Moreover the method in-
herently provides a large degree of generality.
Should the length of the microprocessor's pipeline
ever be extended, the distance branched could be
increased without refetching the instruction
stream.

Thus, when the 68010 processor detects a tight-
loop sequence, it automatically alters its normal ex-
ecution activity to take advantage of the length of
its internal instruction pipeline. The instruction
stream is circulated within the machine, thereby
eliminating the need to make superfluous instruc-
tion accesses. The result is nearly a 50Vo reduction
in tight-loop execution time without the need to
alter the instruction set at all.

Something about branch instructions

The 68000 includes several types of branch in-
structions: a conditional (1 of 15 conditions), and a
sixteenth unconditional type, a subroutine type and
a conditional-branch-with-counter type. The condi-
tional and the unconditional branch instructions
are used most frequently, although the subroutine
type is very important in certain applications.

One instruction, the conditional branch with
counter (D8""), although it is particularly inter-
esting and powerful, has attained little popularity,
largely because of its complex nature (see "The DB""
Instruction," p. 228).

The DB"" type of branching is primarily used in
short, or tightly looped, branching operations
which, in turn, find heavy applications in the imple-
mentation of such high-level functions as array
arithmetic, extended-precision arithmetic, and
string and block operations. These functions typi-
cally require the execution of very few instructions
per loop iteration. Of course, the powerful address-
ing modes and rich instruction set of the 68000 fam-
ily help keep the loops short by enabling operations
such as initialization, arithmetic, Iogical, array and

extended multiprecision data procedures to be

carried out by brief code sequences.

Naturally, the more general execution of a large
loop containing a sequence of many instructions per

iteration can be efficiently carried out by the DB""

instruction too. Depending on the size of the loop,

either a byte or 16-bit word displacement can be

added to the program counter (PC) to form the
branch destination address. For a short branch -
one involving a destination that lies within + 128

bytes of the current PC location-only a single
16-bit instruction word is required. With a 16-bit
displacement word, however, loops as large as + 32

kbytes can be controlled with a single branch in-
struction. Accordingly, the branching overhead
time is minimal when compared with the total in-

w, L indicate an operand size ol byte. word, or long word.

2. The first time the loopable instruction (see Fig. 1) is
execuled, it is treated as it would be in the 680fi1; without
counting the instructions in the loop.

Loopable instructions

Op coder
Applicable

addresring moder

MOVE [BWL] 1Ar) to (Ax) -(Av) to (Ar)
(Ar) to (Ar)* -(Av) to (Ar)*
(Ar) to -(A*) -(Av) to -(Ar)
(Ay)+ to (At) R, to (Ar)
(Ay)+ to (Ar)* R, to (Ax)*
(Ay)+ to -(A*)

ADD [BWL]
AND [BWL]
cMP [BWL]
oR [BwL]
suB [BWL]

(Ar) to Dx
(Ay)+ to D*
-(Av) to D,

ADDA [WL]
GMPA [WL]
suBA [wL]

(Ar) to Ax

- (Av) to A,
(Ay)+ to A,.

ADD [BWL]
AND [BWL]
EOR [BWLI
oR [BwL]
suB IBWLI

Dx to (Ay)
D, to (Ay)+
D, to - (Av)

ABCD [B]
ADDX [BWL]
sBcD [B]
suBX [BWL]

-(Av) to -A,

cMP [BWL] (Ay)+ to (Ar)*

cLR [BWL]
NEG [BWL]
NEGX [BWLI
NOT [BWL]
TST [BWLJ
NBCD [Bl

(Av)
(Ay)+

- (Av)

ASL [W]
ASR [W]
LSL Wl
LSR [wl
ROL [w]
ROR [W]
ROXL [W]
ROXR [W]

(Ay) by # 1

(Ay)+ by #1

-(Av) by *1

Fetch operand number 1

from RYA

lncrement RYA by 2

Fetch operand number 2
from RXA

lncrement RXA by 2

Compare operand number 1

with operand number 2

Set condition codes

Prefetch and advance
program counter

Loopable instruction in lR, IRD
DBc" in IRG

Loopable instruction in IRD
DBcc in IRC---|R

Loopable instruction in IRD
DB.. in lR--.lRD
Displacement--lRC

struction execution time within the loop.
With the 68010, when the destination of a DB""

instruction falls within the length of the processor's
instruction pipe, and when the instruction that is
the destination of the branch is considered a loop-
able instruction (see the table, p.226), the processor
automatically executes both the loop and the DB""
instruction as an integral operation. At the end of
each iteratiotr, the processor executes the normal
activity associated with the beginning of a new in-
struction (which includes the sampling of inter-
rupts, as well as the conducting of tracing, if re-
quired). If after a check for such "exceptions" the
condition codes and the counter value indicate that
another iteration is required, the combined loopable
and DB"" instructions are executed again.

Neither the loopable instruction nor the DB"" in-

struction, as well as its associated displacement
word, are fetched again until the loop-mode oper-
ation is terminated. The only external references
made during loop-mode operation are operand
transfers, thus eliminating the overhead of instruc-
tion fetching.

For example, consider the Compare Memory with
Memory ICMPM W (A*) + (A.) +] instruction in
the tight loop of Fig. la. The instruction pipe of the
68010 consists of three registers and a path into the
execution unit (Fig. 1b). In the figure, IRD is a de-
coding register that contains data for various re-
sidual decoding operations, whereas the IR and IRC
instruction registers provide sequencing control
and a limited amount of residual control.

The first time that this tight loop is executed, the
loopable instruction and the DB"" instruction are

Fetch operand number 1

from RYA

lncrement RYA by 2

Fetch operand number 2
from RXA

lncrement RXA by 2

Compare operand number 1

with operand number 2

Set condition codes

Prefetch
and advance

program counter

Decrement counter

Exit loop

Loopable instruction in lR, IRD
DBcc in IRG

Loopable instruction in lR; IRD--.execution unit
DBc" in IRC----|R

DBcc in lRG, lRrlRD
Loopable instruction in execution unit---lRG

Counter : 0 DBc" in lR, IRD-'-execution unit
Loopable instruction in IRC---lR

Counter # 0

Displacement > - 4

Displacement < - 4

DBcc in execution unit-lRO
Loopable fnstructlon in

lRC, lR*lRD

3. Atter the tirrt loop, il the ditplacemenl i3 within the length ot the instruction pipe,

tubrequent ateralion. conlalt ol a combination ol DB"" and loop back to the lirlt inllruction
(in the ro-called loop mode). HoweYer, becaure inrtructionl need to be letched again,
conriderable lime i! layed over that ol normal looping.

treated normally (Fig. 2). At the end of the exe-
cution of the DB"" instruction, however, the se-
quence determines whether the loop mode should be
entered. If the displacement value does not exceed

- 4 and the branch conditions are met, then the loop
mode is entered and an internal status bit is set.
Thereafter, the 68010 executes the distinct micro-
routine that is the composite of both the loopable
instruction and the DB"" instruction (Fig. 3).

In order to present an identical programmer's
model when dealing with exceptions, the loop status
bit is cleared at the termination of each normal
instruction, and only at the end of a DB"" instruc-
tion and a subsequent loop instruction routine is the
loop bit set. Accordingly, if the program is being
traced, the trace microsequence is executed before
the end of the DB"" operation, the status bit is not
set, which automatically prevents the loop mode

The DB""

The DB"" instruction is a general branching prim-
itive that allows loop control with two exit condi-
tions. DB"" tests the condition code register for one of
sixteen conditions, which includes always true, or
unconditional, branching:

Carry clear
Carry set
Equal
Never true
Greater or equal
Greater
High
Less or equal

Low or same
Less
Minus
Not equal
Plus
Always true
No overflow
Overflow

Based on the result of the test, either the loop is
exited or a word-sized loop counter in one of eight
user-specified data registers is decremented. When
the result of the decrementing is - 1, the looping is
terminated. As long as the condition tested remains
false and the counter has not reached - 1, the branch
is made and the looping continues. Thus the DB"" can
be thought of simply as an iteration counter com-
bined with a branch conditional instruction.

Consider a simple example, where N consecutive
8-bit data items are to be initi alized to zero. A typical
loop would clear the first item, decrement N by one,
test for zero, and continue the loop if N is not equal
to - 1. A simple loop using the DBRA instruction in
the DBcc operation can carry out this procedure:

LEA data item, AO /* point to first item */
MOVE.W #N-1, DO /* get loop count in DO */

LOOP CLR. B (AO)+ /* clear data item, advance
pointer * /

DBRA DO, LOOP
{ordj".,t9}ent

count, check

The loop terminates only when the count of items has
expired, because a true always (false condition)
branching condition is in effect.

If the loop is to be terminated after a certain condi-
tion is found, the count field of a data register may be

set to - 1 before the loop is entered. The loop then
continues until the termination condition arrives,
and then the loop is exited. By inverting the value in
the data register, the number of iterations through
the loop may be obtained. This use of D4. is helpful
in counting certain types of data items or in
searching for a specific value through a contiguous
list of values where the search requires an actual
count of iterations.

Suppose the length of a string terminated by a data
byte of $00 is to be calculated. This is a typical oper-

instruction
ation in the C program ming environment where
strings are represented as a sequence of characters
(bytes) terminated by a null byte equal to $00. A
typical assembly language sequence for strings up to
6a kbytes might be:

Note that the DB"" combines the normal count (add
or subtract) and the conditional branch instruction
into a single primitive. Combining this string with
the previous looping example permits searching a

string of a known length for a particular character or
a value. This use of the DBcc uses both conditions as

a basis for loop exiting.
Many systems place an upper limit on the length of

a string or the index values of an array of elements.
Then when the end of the string or array is reached,
the loop action must terminate. The example that
follows searches an array of elements designated
ARRAY[0:N], for a specific value, where N is the
number of elements in the array and 0 is the value to
be matched:

LEA string, AO

MOVEQ #-1, DO
LOOP TST. B (AO)+

DBEG DO,

NOT. L DO

LEA string, AO

MOVE. L #N, DO

ADDA. L DO, AO

MOVEQ #Q, D1

LOOP CMP. B -(AO), D1

/* get address of first char-
acter in string * /

/" test the current byte in
string " /

LOOP /" it last byte was zero, exit,
else loop * /
/* DO now contains length
of string " /

/* get address of first char-
acter in string " /
/* get number of elements
into DO * /
/" get pointer set up */

/" value to be matched into
D1 */

/" test the current byte in

string * /
DBEQ DO, LOOP /* at last byte was zero, exit,

else loop * /
/ " AO points to element
matched or to ARRAY[O] . /
/* DO is element # in array
that matches * /

When the value is found, general-purpose register
DO contains the index of the value in the array, and
the zero bit (Z) in the condition code register will be

set once the loop terminates.

from executing. In this w&y, the integrity of a trac-
ing operation is maintained, even when the loop
mode is called for. Otherwise, the trace mode, which
also starts at the end of a DB"" instruction would
interfere with the loop mode.

String functions are easily written to take advan-
tage of the loop-mode capability of the 68010. Loops
which manipulate such strings are particularly
common in high-level-language programming. For
example, consider the character string functions in
the high-level C programming language-STRLEN,
STRCMP, and STRCPY-which determine the length
of a string, compare two strings, and copy one string
to another, respectively. A character string- a
sequence of bytes terminated with a byte equal to
zero-represents an array of characters. Indexing
provides successive characters of'the string, and the
length of a string need not be fixed; however, an
upper limit may be imposed by the string definition.

A single DB"" loop can implement the string-
length function, STRLEN, up to 6a kbytes long with:

LEA string, AO (rr,fl;t address of first character in

MOVEQ #-1, DO
LOOP TST. B (AO) + /* test the current byte in string"/

DBEQ DO, LOOP (.,n last byte was zero, exit, else loop

NOT. W DO /**/DO now contains length of string

Moreover, the string can be extended to occupy
the entire 32-bit address space of the 68010 with the
addition of only a single outer loop.

With only eight clocks of overhead required be-
fore entering the loop, the 68010 could then execute
this function for a typical 80 byte string in 905 clock
cycles, or 91 ps, at a clock frequency of 10 MHz. The
equivalent code on a 68000 runningat 10 MHz would
take 146 ps for the same string length. Each iter-
ation takes 12 clocks on the 68010 vs 18 clocks on the
68000 -a significant performance improvement.

Similarly the string copy function, STRCPY, can
be coded to copy strings of up to 64 kbytes long:

LEA string 1, A0
LEA string2, A 1

/* get address of first string * /
/* get address of second string*/

MOVEQ
'* -

1, DO
LooP MovE. B (A0)+, (A1)+ [Ji?,rd ;\lr^"ter

from strinsl

DBEQ DO, LOOP
fi$last

byte was zero, exit, else

An average string length of 80 characters would
execute in 116 ps on the 10-MHz 68010, with each
loop iteration requiring just 14 clock cycles. At the
same clock frequetrcy, the 68000 performs the func-

tion in about 195 ps, with a Zl-c\ock-loop iteration.
To demonstrate this increase in speed, consider a

single dimensional array of 32-bit data with index
numbers running from zero to some value N [0:N].
The first step, generally is to initialize the array.
Some languages require the array elements to be
cleared upon allocation. The automatic loop mode
supports such an operation function quite nicely:

LEA ARRAY, Ao
l; j;:r"9/r"s of first element

MOVE.W #N, DO (ti"Jroo to max array dimen-

LooP CLR.L (Ao)+
ff[il

the current 32-bit array

DBRA DO, LOOP /* loop through array indices */

For an array of 100 elements of 32 bits each, the
sequence executes in 143 ms on the 68010 operating
at 10 MHz, with each loop iteration requiring just 14

clocks. The 68000, however, at the same clock fre-
quency, performs the identical function in about
302 ms with a loop iteration time of 30 clocks. Be-
cause of its fast tight-loop mode, the 68010, there-
fore, is more than twice as fast at executing the
array initialization as the 68000.

Another use of the loop mode is in extended-
precision arithmetic. In addition to the usual han-
dling of 32-bit data with single instructions, the
68000 architecture provides extended instructions
ADDX (Add Extended), SUBX (Subtract Extend-
ed), ROXL/ROXR (Rotate Extended), ABCD/
SBCD/NBCD (Add/Sub/Negate BCD), and NEGX
(Negate Extended). With these instructions, words
of unlimited size may be constructed and operated
on. For example, consider the use of the loop mode
in the addition of one 512-bit integer to another,
where the integers are represented by N (16 in this
case) consecutive 32-bit memory locations. The loop
appears to be very similar to the last example:

/. initialize pointer for first inte-
ger */
/. initialize pointer for second in-
teger * /
/* get loop iteration count ini-
tialized . /

AND, B *$0' ccR
1","',1?3'o:3:ljliSl .'roo"' ror

LOOP ADDX. L -(AO), -(A1\ /.. add integer 1.to integgl 2
using extended arithmetic * /

DBRA DO, LOOP /* loop until add complele'/

The 68010, operating at 10 MHz, performs the
addition in 56 ps, and each loop iteration requires 32
clock cycles for each additional 32 bits of operand.
The 68000 can execute the same loop in 7I ps and
requires 40 clock cycles per additional iteration.D

LEA digit 1, AO

LEA digit2, A 1

MOVE. W #N - 1, DO

Reprinted with permission from Electronic Design Volume 31, Number 22, Copyright Hayden Publishing Company lnc.,'t98i!l

@ frl@In9lFr@lLA Semiconductor produc$ tnc.
3501 ED BLUESTEIN BLVD., AUSTIN, TEXAS 78721 o A SUBSIDIARY OF MOTOROLA tNC.

5,000 AR_2lt

