
ticrocoded microprocessor simplifies
Yirtual-memory management

When the operating system handles virtual-memory operations
the programmer is liberated from clumsy restrictions

by ThOmaS W. Starnes, Motorola Ltd., Semiconductor Products Sector, Milton Keynes, Engtand

fl Virtual-memory techniques have been implemented
successfully in mainframes and minicomptuers in the
past. But schemes to extend the memory in microproces-
sor systems have had two major drawbacks. Either they
required an additional microprocessor to perform virtual-
memory operations or their software had to be written in
overlays within well-defined boundaries. Motorola's
MC68010, however, allows the operating system to han-
dle virtual-memory operations, freeing the application
programmer from the restrictions previous designs had.
To fully support a virtual-memory scheme, the 16-bit
microcoded microprocessor has seventeen 32-bit general
purpose registers, a 32-bit program counter, a l6-bit sta-
tus register, a 32-bit vector register, and two 3-bit alter-
nate-functi,on code registers.

Permanent storage and tempotary random-access
memory need to be finely balanced to make a system
both cost-efficient and operationally sound. Virtual mem-
ory combines primary memory-the semiconductor
memory to which the processor has direct access-with a

secondary storage unit, such as a tape, drum, or hard or
floppy disk, to yield a low-cost-per-bit increase in the
system's apparent memory. In practice, virtual memory

lets a user write a program that is too large to fit com-
fortably in the available semiconductor memory.
A good way to determine what information the primary
should contain is to allow the natural flow of instructions
and references to data to feed primary memory as the
executing program demands. This method takes the bur-
den from the application programmer and places it on
the processor supported by the operating system and is
ideal for virtual memory systems.

tanaging data intelligonily

Because instructions normally follow in sequence, a
program usually executes within a relatively narrow win-
dow around the current instruction. That is, if instruc-
tioq n is executing, chances are that fhe next instruction
to execute is fairly close by, and most likely is n + 1.

Therefore, if the primary always contains the current
instruction and the sections of code immediately before
ariO after it, chances are good that the processor will
continue to execute the instructions out of primary mem-
ory: the primary's contents are filled with information
that falls within a short range of the present instruction.

The MC68010, however, easily manages situations that

4R214

MMUE T
L

,L

T
x

t
L

+
I

LI

.r-
x

t
L

+
I
LI

PHYSICAL (MAIN}
MEMO RY Enl

PHYSICAL (MAIN}
MEMO RY

SECONOARY DISK
MEMO RY

SECONOARY DISK
MEMO RY

(a) (b)

l. Xew plga When the data to be accessed is outside the primary memory's physical boundaries, the correct intormation block must be cop-
ied lrom secondary memory. To access the ADD instruction (a), a new section must be moved from socondary into main memory (b).

Reprinted from ELECTRONICS, December 1, 1983. Copyright O 1983, McGraw-Hill lnc. All rights reserved.



Scheme$ fw managing vittral memor!
A nurnber of virtual-mornory schemes have been tried
previously in microprocessor-based systems; most of them
turned out to be clumsy and inefficient, putting additional
burdens on either the programmer or
the microprocessor, or both. The pro-
cesses basic to most schemes, how-
ever, sound very simple. Typically,
(see part a of the figure), when the
central processing unit attempts to
access a memory location outside
the physical memory, a bus-fault sig-
nal notifies the procassor that some-
thing is amiss. At this point, the oper-
ating system must determine which
block of secondary memory to copy
into primary memory. Once the oper-
ating system has shifted the propor
block of memory and updated the
memory rnanager, the CPU can con-
tinue to access the needed informa-
tion frorn the physical memory.

A more practical system breaks up
memory into more defined pieces and
keeps many more active blocks in
primary memory (see part b of the
figure). One block might contain in-

structions, another necessary data.
Sorne CPUs segment memory in

an attempt to manage memory use
efficiently, but this introduces rnore
problerns than it solves. The operat-
ing system must determine the prima-

ry's best contents. This may b basd
on the Upe or sections of code that
are expcted to be executed and the
data that the code needs.

It is the programmer who must Pro-
vide this information to the operating
systern each time a portion of code
executes, which forces the program-
mer to match the program's mernory
requirements to the arrangement of
physical memory. This could cause
great problems if all the needed seg-
ments to be accessed exceeds the
primary memory's physical bounds.
Segment constraints and size limita-
tions thus restrict the freedom of any
of these segments to grow, especially

dynamically, and the programmer must be constantly aware
of the segment's boundaries. He or she is better ofi if such
considerations are unnecassary.

ilI680 (l ADORESSES

150

ir6_80!,0 Aqo_REssE9
15 0

RAND0lul-ACCESS
MEIUIORY LOCATIOilS

(ltlEi,l0 RY'
}IANAGEIIET{T Ut{IT
AOORESS OUTPUT}

150

150
PHYSICAL (tulAlil)

ME}IO RY

RAr{D0il-AccEss
rEtroRY L0cATl0ils

(ilEm0RY'
ITAIiIAGEMETllT UNIT
AODRESS OUTPUT}

150

150
PHYSICAL (MAIN)

TIEMO RY

otsK L0cATloNs
150

SECOI{DARY IUTE}IO RY

-

DrsK LocATl0l{s
150

150
SECONOARY TUIE]UIORY(b)

require an instruction beyond the reach of the primary
memory's current contents or require data from a section
of memory not in the vicinity of the data recently ac-
cessed. In a simplified example (Fig. la), if primary
memory is L words long and contains an L-sized copy of
secondary mernory, and the memory block begins at X in
the second &f!, the primary memory's contents may be

described as being bounded by X and X + L.

The central procesing unit knows the primary only as

0 through L. When the processor accesses the memory
.address at L+ 1 (aOn), no information can come directly
from primary memory. But in order to access this word,
which is really at X+L+l, the block of information
surrounding X+L+l must first be copied into the pri-
mary. A convenient block may be between X + L and
X+L+L, which is the next L-sized block in secondary



memory. This block is now copied into primary memory,
enabling the processor to fetch not only the original
address at L+ I (noo) but also the next address at L+2
(cur) from the primary (Fig. lb).

In reality, of course, bringin g a block of new informa-
tion into primary memory may be more complex. The
programmer must make sure that the data existing in
primary memory is not overwritten and lost. To ensure
that the old information is safe, the existing block in the
primary might first have to be copied back into the
secondary. The operating system determines whether sec-
ondary memory needs updating, and this action is facili-
tated by a modified bit in the memory manager. This bit
indicates if any write operations have taken place in the
memory block after it was moved into the primary.

Bus.eror reeouert

The MC68010 uses instruction continuation to support
virtual memory. Basically, this approach involves starting
an instruction, flagging a fault to the cPU before the
instruction ends, and suspending the instruction in an
orderly fashion (Fig. 2a). It then provides a mechanism
to allow the instruction to pick up where it left off once
the fault is corrected and continue through completion.
To do this, when a page fault occurs, the processor stores
its internal state; after the page fault is repaired, it re-
stores that internal state and continues to execute the
instruction. Though this technique is difficult to imple-
ment in random-logic CPUs, it is relatively simple with a

microcoded processor.
Instruction continuation appears to be b'est for the user

and frees the application programmer from the restric-
tions of other schemes. An alternative is instruction re-
start. Here, the processor must remember the system's
exact state before each instruction starts in order to
restore the stage if a page fault occurs during execution.
In addition, no memory fault is fully recoverable.

To implernent intruction continuation, the MC68010
uses a bus-error (nenn) signal-which can cause any and
all instructions to abort befope even a bus cycle is com-
pleted-to warn the processor that there is a problem
with the bus cycle in progress. When the MC680l0 re-
ceives a bus-error signal, it aborts the bus cycle and
begins a special internal procedure to suspend the in-
struction (as opposed to forgetting it, as in instruction
restart). It now goes to the Supervisor stack, where the
operating system works, and places information that will
help the operating system determine the cause of the
fault on the stack. This information includes the logical
address, control information associated with that address,

the instruction being executed, the status register, and
the program-counter values when the fault was signaled.
The operating system can then inspect it to determine
the necessary action to correct the bus fault.

In a microcoded machine such as the MC68010, a

microinstruction specifies every internal operation associ-

ated with any instruction. The microprocessor also has

numerous unseen registers, latches, and bits-all of
which have information that guide the CPU's operation.
The MC68010 also saves all this information, which is

needed in order to continue an instruction, on the super-
visor stack.

2. Recovery. Using an instruction-continuation technique, Motoro-

la's MC68010 receives a bus-error signal (BERR) when a page fault

occurs (a) and then aborts the instruction. lt saves all the information

on the supervisor stack so that when the CPU returns from the

correction routine, the return-from-exception (RTE) i nstruction reruns

the faulted bus cycle and the instruction continues to execute.

The cPU gets external information, such as the type of
error from the memory-management unit. If the system
uses an error-detecting circuit, it might be polled to
determine the nature of the error it found on the data
bus. The operating system examines this information to
help determine the fault's cause.

As shown in Fig. 2b, when the cPU returns from the
correction routine, the return-from-exception (nrE) in-
struction reloads ,the MC680l0 with the internal state
stored on the stack, renrns the faulted bus cycle, and
then continues the suspended instruction.

In a worst-case example, neither the operating code
nor its source or destination operand are in primary
memory when an instruction begins. First, &tr op-code
fetch shows that the instruction is not in the primary.
One bus fault and fault-correction routine later, however,
the processor re-executes and finds the op code. But
trying to fetch the source operand results in a second bus
error. Another bus-error routine and the source operand
becomes available. A write attempt to the destination
location results in yet another bus fault. Again, fault
correction can get the destination into primary memory
and, after recovery, the processor completes the

n

BUS.
ERROR
SIG NAL,
BERR FAU LT-

t[ili!fii''-
OEPENDENT)STACK

POINTER

(a)

FAU Lr- RE-T,qlN-f!9M
CONTINUE

ATTEMPT \ O LO
oLD D tNsrnucnor\

BUs cYcLE Y 
lSrrrr'0,

COnnLClOn EXCEPTI0N
ROUTI*'I
(SYSTEM. V

OEPENOENT)

MC68010

BUS.E R RO R
rr{F0 RMAT|0ir

INTERNAL.
STATE

IN FO RMATIO N

SUPERVISOR
STACK

instruction.



(A frI@|TolFrOLA Semiconductor Products Inc.
V 

3s0i ED BLUEsTETN BLVD., AUSTIN, TEXAS 78721 o A suBSrDrARy oF MoroRoLA rNc.




