
Within the 68020
Besides new instructions, the 68020 has additional

hardware features - cache memory, dynamic bus sizing
and pipeling.

Adding a coprocessor enhances the
main general purpose processor by
incorporating new instructions, reg-

isters and data types into the system without
overloading the main processor.

Interfacing between the main processor
and coprocessor is not noticed by the user
i.e. the programmer need not be aware that a
separate piece of hardware is executing some
of the program -code sequence. In the 68020
microcode within the device takes care of
coprocessor interfacing so that any co-
processors appear as a natural extension to
the main processor architecture.

Using devices without a coprocessor inter-
face such as the 68008, 68000, 68010 and
68012, communication between the main
c.p.u. and coprocessor is possible by observ-
ing the correct sequence of coprocessor
primitives necessary for the interface. These
primitives are a method of passing com-
mands and data between the main processor
and coprocessor. .

Accessing coprocessors over the co-
processor interface is straightforward since
the interface is implemented using standard
M68000 asynchronous bus structure with-
out the need for any special signals. This not
only makes the interface simple; because of
the asychronous nature, the main processor
and coprocessor can be operating at different
clock frequencies. Designers can therefore
optimize a system to make best use of the
speed options available.

The coprocessor need not be architectur-
ally similar to the main processor but can be
designed so that it best suits its required
application. The only requirement is that it
adheres to the coprocessor interface pro-
tocol. A coprocessor can indeed be im-
plemented as a v.1.s.i. device, as a separate
board or even as a separate computer.

When communicating with a coprocessor
the MC68020 executes bus cycles in c.p.u.
space to access a set of interface registers
(cm). The 68020 indicates that it is accessing
c.p.u. space by encoding the function -code
lines as all high (Fc0_2 =1112). Chip selection
of the coprocessor and the relevant register
is then performed by the address bus.

Encoding of the address bus during cop-
rocessor communication is shown in Fig. la.
This illustration shows that by using the
'Cp-ID' field on the address bus up to eight
separate coprocessors can be interfaced con-
currently to the MC68020. Figure lb shows
how simply this can be done.

You can see that, if required, there could
be several 68881 floating point coprocessors
operating concurrently in your system to
facilitate very fast and complex number
crunching. Interfacing to these separate
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coprocessors is simply a matter of encoding
the relevent Cp-ID in the coprocessor in-
struction, and hence on the c.p.u. space
address -bus encoding, so that the MC68020
will communicate with the relevant register
set in c.p.u. space.

Figure 2 shows how the separate interface
register sets are located in c.p.u. space.
Within this interface register set the various
registers are allocated to specific functions
required for operating the coprocessor inter-
face. There are registers specifically for
passing information such as commands,
operand data and calculated effective addres-
ses (effective address calculations, and
associated operand fetches, are performed by
the main processor). Other registers are
allocated for use during a context switch
when the internal state of the coprocessor
needs to be saved and then restored.

DYNAMIC BUS SIZING

The 68020 can dynamically change the size
of the data bus on each bus cycle. This
feature has been included so that the proces-

sor can communicate with peripheral de-
vices intended for 32, 16 or 8 -bit buses.
Dynamic sizing can also be used to retrofit a
68020 in a 16 -bit system and although the
full performance increase of a 32 -bit proces-
sor is not gained, performance improvement
can be considerable.

Four signals have been added to support
dynamic bus sizing, namely DSACK0,1 and
siz0,1. Data transfer and device -size acknow-
ledge signals DsñcK01 replace the DTACK (data
transfer and acknówledge) asynchronous -
bus handshaking on the 68000. As with the
68000, these signals are used to terminate
the bus cycle but they also indicate the
external size of the data bus. Signals siz0,1 are
outputs indicating how many bytes are still
to be transferred during a given bus cycle.

To illustrate this principle, consider the
68020 writing a long data word (32 bits) to
an eight -bit memory device. (This would
have a serious effect on system performance
as four write cycles would be needed). Bus
timing diagram Fig.3 shows the four cycles
required to write the information into
memory.

Using dynamic bus sizing, during a write
cycle the 68020 always drives the entire
32 -bit data bus even though all 32 bits may
not be used. If data is transferred as a byte, it
is placed on 024-31, if it is transferred as a
word it is placed on D16-31 and if it is
transferred as a long word D0-31 are used.

A multiplexer within the 68020 routes
data to various sections of the data bus
depending on bus size. Address lines A0,1 are
linked to this multiplexer. Their encoding
indicates a one, two or three -byte offset for a
long word to be read from or written to
memory.

Unlike other 68000 -family processors, the
68020 allows you to place data misaligned in
memory, including the user and supervisor
stacks. As far as the programmer is con-
cerned this misalignment goes unnoticed in
the hardware but it affects performance by
increasing the number of data transfers. In
fact the only limitation on data storage in the
68020 is that the instruction word, or op -
code, must lie on a word or long -word
boundary. This is to retain upward software
compatibility with 68000 -family software.

Consider this example illustrating the
principle of misaligned data transfers. Data
is transferred to memory by the 68020 over a
32 -bit data bus, however the memory
address has been offset by one byte from a
long -word location.

Figure 4, in which the timing diagrams
are simplified to show just the signals used
to control data flow, clarifies the situation.
Tables summarize decoding of the siz and
DSACK signals. Also shown is a representation
of how the data is organized within the
processor.

Since the data is misaligned by one byte
the processor needs to make two memory
accesses to transfer the long word. During
the first cycle, three bytes of data are
transferred and the second cycle transfers
the last byte.

During the first transfer the processor sets
the siz pins low to tell the memory that the
processor has four data bytes to transfer (a
long word). The memory address is odd and
offset by one byte from a long -word address
so address lines A0,1 are at logic one and zero
respectively.

Using DSZK0,1, the memory controller
indicates that it is 32 bits wide. Information
placed on the data bus, in long -word form
displaced by eight bits, is carried on 023-0.
The lower eight bits are not transferred
during this cycle. Information placed on
D31_24 is just a mirror image of data on D2S_16
and should be ignored by the controller
during a write cycle.

During the second transfer, the long -word
transfer is completed. Again, DsncK0,1 indi-
cate a 32 -bit port but the siz pins indicate to
the memory controller that only one byte
remains to be transferred. Data is transfer-
red as one byte on address/data lines 024.31.
Inside the processor, data is transferred
within the registers on the opposite end of
the data bus. The remainder of the data bus
carries a mirror image of this data and
should be ignored during write cycles to
memory.

Figure 5 shows data transfers over a 16 -bit
port misaligned by one byte. In this example,
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it takes three data transfers to transfer a long
word. These examples illustrate that the
68020 can be designed into systems with 32,
16 or indeed 8 -bit data buses and with a large
possibility of data being placed in aligned
and misaligned memory.

CACHE MEMORY

Increasing the speed of the 68020 from
16.7MHz to 20 and 25MHz has been accom-
panied by increases in the cost and difficulty
of interfacing the device to external memory
without using wait states. The device's inter-
nal 256 -byte instruction cache relieves this
problem.

A minimum of three clock cyles is re-
quired when the processor accesses external
memory. However if the information is held
in the cache, which can be thought of as very
fast on -chip local memory, then only two
clock cycles are required.

Computer simulation tests were carried
out for the 68020 based on the 68000
architecture to find out what type and size of
cache would be most beneficial; 256 bytes
was found to be the best compromise be-
tween efficiency and cost. The cache theory
rightly assumes that modern computer
programming involves the program re-
peatedly executing small sections of code as
opposed to randomly jumping over large
linear address spaces.

When the processor fetches an instruction
from memory, the processor is redundant
since no processing can be performed until
the instruction has been decoded (this is not
strictly true for the 68020). If this instruc-
tion fetch can be performed from the cache
then the processor spends less time waiting
for information from external memory. This
has an even greater effect if there is a
memory -management unit (m.m.u.), exter-
nal bus or magnetic backup storage in the
system. In such cases it may not always be
possible to access external memory with no
wait states.

The cache, Fig.6, is 'hit' when address
field A8-31 and function -code Fc2 (indicating
instruction accesses) match the internation-
al cache tag field. Cache hit is a term used to
describe the condition where the address
and any other control information presented
on the bus matches information previously
placed in the cache tag field.

Some 64 long words are available for
storage of cache information. Since the
cache is always updated on a long word,
maximum throughput is achieved when two
instructions in memory are held in the
cache. Address lines A2.7 select one of 64
entries. t'p)n reset, the cache is disabled and
all entt:zs are made invalid; the y bit in the
tag field is also cleared.

Two registers are used with the cache -
the cache -control register, CACR, and the
cache address register, caAR. Enabling, dis-
abling and clearing of the cache is carried
out by the control register. This register can
also be used to freeze individual entries in
the cache so critical code sequences can be
run within the cache.

It is not possible for the programmer to
access cache entries directly. Programming
the cache registers is performed using the
MOVEC instruction and so can only be done in
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supervisor mode. This ensures that the user
cannot accidentally effect the cache opera-
tion. Using cache clearing, the operating
system can perform a fast context switch in
just one instruction.

In addition to the software cache -enable
facility, an external hardware cache disable
pin, CDIS, can be used to dynamically disable
the cache on the next internal cache -access
boundary.

THE PIPELINE

Within the 68020 is a three -stage pipeline
used for instruction execution, Fig.7. In-
structions enter the pipe either from the
external bus or from the instruction cache,
also within the processor. These instruc-
tions are not the ones currently being
executed but are 'prefetched' instructions
obtained by the bus -interface unit.
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MASTER/INTERRUPT STACKS

Most high-performance microprocessors have two stack pointers. One is usually to the system stack,
reserved for interrupts, etc., and the other is the user stack for temporary data storage and parameter
passing. In the 68020, these stacks are A7 and A7'.

During normal operation most code will be executed in user space and programs will use the A7
stack for temporary data storage and parameter passing between software routines. Interrupt stack
A7' will only come into use when an exception occurs, such as an external interrupt when control is
passed to supervisor mode and the relevant exception processing performed.

In many microprocessors this supervisor stack pointer is the only one accessible during exception
processing and all data storage and context switching has to be performed on only one stack. With
complex multi -tasking maintaining the main system stack costs processing time; interrupt information
for the program counter and status register is interleaved with process -control blocks for various
software tasks.

This problem is alleviated in the 68020 by a third stack - the master stack - specifically for holding
process -related information for the various tasks. When the master stack is enabled, through bit In in
the status register, all non -interrupting exceptions like divide -by -zero, software traps and privilege
violation are placed in the user's process -control block on the master stack.

When the first interruption occurs, typically a timer interrupt from a preemptive scheduler, the
processor places the program counter, Pc, the status register, SR, and the vector offset on the master
stack A7". It then duplicates this information on the interrupt stack A7'. The processor is now free to
manipulate the processor control block without any further interrupt information being placed on the
master stack.

All subsequent interrupts received while performing exception processing are placed only on the
interrupt stack A7'. An effective context switch can now be performing by simply reloading the master
stack pointer and mapping in another task's process -control block. This allows context switching to be
performed without any master -stack modification by higher -priority interrupts which may occur during
the exception processing for the preemptive scheduler's timer interrupt.

With prefetching, long words are always
fetched and the cache is arranged as long
words. After a prefetch has been requested,
the long -word obtained is placed in a 32 -bit
holding register (stage A) called the cache
holding register. This register is used to hold
the prefetched long word in the case of a
cache miss or to hold the prefetched long
word from the cache if a hit occurs.

When a cache hit occurs, the external bus
performs an aborted cycle with the ecs pin
asserted followed by a second assertion of
WI. Address -strobe pin AS is not asserted
during a cache hit. If data is prefetched from
the external data bus, it is routed directly to
the 32 -bit arithmetic logic unit, or a.1.u.
This a.1.u., with which is associated a 32 -bit
barrel shift register, performs arithmetic
and logical operations on data registers.

From the cache holding register, instruc-
tions pass to stages B, C, and D, where the
instruction is executed. Movement through
the pipe is governed by the execution time of
the instruction at stage D. On reaching stage
D of the pipe, the executing instruction
corresponds to the program counter.
However the processor needs to know where
the extension words, etc, for the instruction
are so temporary pointers are set up for each
stage of the pipe and holding register. These
pointers are used to obtain data from each
stage of the pipe to allow completion of the
instruction.

Using pipeline architecture, the processor
operates much faster since no external bus
cycles are needed to fetch extension words,
etc. Flow of the temporary pointers is track-
ed by a 32 -bit arithmetic unit. There is a
third arithmetic unit in the 68020 for arith-
metic operations between address registers
such as calculating effective addresses. To
produce effective addresses needed by the
instruction when it is in stage D of the pipe,
stage c can be used for effective address
calculation. Stages c and D have inputs for
allowing them to control the 32 -bit a.1.us
and a.us.
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Within the 68020
To make best use of the 68020's upgrading to 32 bits, the

68000 -family instruction set has been expanded.

Widening the address and data buses
of the 68020 to 32 bits meant that
new instructions were needed to

make best use of the extra width. For
example with an addressing range of up to
4G -byte it became necessary to have branch
instructions with 32 -bit displacement to
reach any address.

Other instructions, like the register -
boundary check and signed/unsigned multi-
ply instructions CHK. MULS and minx, have been
extended to operate on 32 bits operands. In
addition, the divide instruction DIV now
operates on 32 and 64 bits of data and Divs
can be used to perform a 64 -by -32 -bit divi-
sion. A new instruction, own, has been
added specifically for 32 -by -32 -bit long -word
division.

Arithmetic capability of the 68020 is
improved. To speed up operation of shift and
rotate instructions, a 32 -bit barrel shift
register has been designed into the proces-
sor. This allows from 1 to 32 shifts or
rotations to be made within a register in only
one clock cycle.

Two other instructions for sign extension
and linking lists of local data, Err and LINK,
have been modified. Sign extension of a byte
to a word or long word is now possible using
the modified EXT instruction EXTB, and LINK
can accommodate a 32 -bit displacement.

Lengths of some instructions executed on
the 68020 may differ from the same instruc-
tions executed on the 68000. This is because
the new addressing modes require an addi-
tional 32 -bit instruction -extension word
which is decoded by the processor.

INSTRUCTION ENHANCEMENTS

New instructions have been added to give
additional flexibility for the programmer.
One of these is CHK2 which performs an upper
and lower boundary check on a register's
content, instead of just on the upper bound-
ary as with other 68000 processors.

With the 68000, the TRAIN instruction
causes a system trap which routes to the
operating system via a supervisor access if
the condition -code register overflow bit is
set. This instruction modified to TRAP" now
responds to all the bits in the condition -code
register.

In addition to the coprocessor general
function instructions for passing command
words to coprocessors such as the MC68881
floating-point device, there are six instruc-
tions for testing or controlling active co-
processors within a 68020 system. Their

1Nvo previous articles presented in our December and
January issues introduced the 68000 family and discussed
68020 architecture.
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mnemonics are cpsAvE, CpRESTORE, CpB, c-
Dficc, cps, and CpTRAP.

The last four of these instructions operate
in the same way as 68020 instructions kc,
DB", s, and TRAP except that they operate on
the coprocessor condition -code register.
During assembly, these instructions are
given an identifcation field (ID) correspond-
ing to one of eight possible coprocessors.
Using these test and control instructions,
the programmer can make judgements
based upon the results of a coprocessor
operation.

Instructions CPSAVE and CpRESTORE perform

a context switch on a processor. Each time a
context switch occurs (the operating system
switches to a new user or runs a new task) all
internal information that the coprocessor
requires to perform instructions is placed on
the supervisor stack. After the context
switch the new user or task has full use of the
coprocessor internal programming regis-
ters. To restore the coprocessor to its origin-
al condition, i.e. its state before the cpsAvE
instruction was issued, CpRESTORE is used.

SUPERVISOR INSTRUCTIONS

Improvements have been made to the 68020
supervisor mode. A number of specific in-
structions belong to this group. To
accommodate programming of the 68020's
additional control register the MOVEC instruc-
tion now covers cache control and address
registers.

For example a moveci DO.CACR operation
loads the value contained in Do into the
cache control register. The value repre-
sented by DO can indicate a cache enable, a
cache clear, a cache freeze or a clear entry
operation.

To perform the debugging task of insert-
ing breakpoints into a code sequence the
68000 processor needs to execute a prede-
fined illegal instruction. On receiving such
an illegal instruction the processor jumps to
the illegal instruction's exception -handling

Breakpoint 2

acknowledge
odd r ess

1 1 1

routine and executes the required break-
7oint task. In a monitor program for exam-
ple it may well halt the program and display
the internal register contents on a terminal.

Using this method, the processor has to
store an entry for the displaced code in some
form of breakpoint table in memory. A large
amount of software is required to manage
this table, for example to replace the original
opcode after the breakpoint has been
finished with by the programmer.

A dedicated breakpoint instruction, BKPT,
is included in the 68020 and used in the form
imirr# <data>. Since the immediate data
value represented by# <data> can be from 0
to 7, up to eight hardware breakpoints are
possible. In Motorola assembly language,
the # sign designates an immediate value.

On executing a breakpoint instruction the
68020 reads a word from the c.p.u.-space
address corresponding to the breakpoint
number, Fig.1. If the DSACK, signals termin-
ate the cycle then the data at this address is
latched into the processor. This data is the
16 -bit opcode that was displaced to make
room in memory for the breakpoint instruc-
tion. If this breakpoint acknowledge cycle is
terminated by the BERR control signal then
the processor performs exception processing
for an illegal instruction - as with the 68000.

This hardware process is much faster than
the 68000 equivalent since the breakpoint
table is managed by the processor and not
the system software. The sequence of events
illustrated in Fig.2 shows that when a
breakpoint instruction is placed in a code
sequence (by a monitor program, say) it
places the displaced opcode into its corres-
ponding c.p.u.-space register or memory
location.

The remaining 16 -bits of this register can
be used to implement a breakpoint count.
This count is loaded with the number of
times the program should execute the dis-
placed instruction before the breakpoint is
actually taken. For example if BKPT is ex-
ecuted and the count is non -zero then the
external hardware will need to generate
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2 04LI ,

100000000100000000000 001E3KPT#1001
II

p u
space

type
field BKPT- Encoding of the

breakpoint number

Fig.1. During a breakpoint -acknowledge cycle the 68020 addresses this memory location
in c.p.u. space (function codes all ones) to fetch the displaced opcode. If the breakpoint is
to be taken then the memory access shculd terminate in a BERR, otherwise DSACKx, are
asserted.
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Fig.4. When executing the TAS instruction (test and set an operand) the cycle is made
indivisible, i.e. uninterruptible, by continued assertion of address strobe AS

through the read and write operations.

Fig.3. External breakpoint hardware. Eight
long -word memory locations from 0-1F16
in c.p.u. space are used to temporarily
store the opcode replaced by a BKPT in-
struction. Each time BKPT is executed the
68020 accesses one of the locations
depending on which breakpoint is being
executed (okFro - BKPT1) If the count value
(bits 0-15) is not zero the replaced opcode
is placed on the data bus (bits 16-31) and
the DSACK, lines are asserted. If the count is
zero then BERR is asserted to initiate a
breakpoint acknowledged cycle in the
68020.

DSACKX in order to execute the displaced code.
When the count reaches zero the hardware
should generate t-ol and exception proces-
sing will begin for the breakpoint service
routine. For simplicity, design of this hard-
ware can be incorporated into a memory -
management unit as is the case with the
MC68851 paged -memory -management
unit.

Hardware is shown in Fig.3.

MULTIPROCESSING AND
MULTITASKING

The MC68020 has several facilities for multi-
processing. It has special instructions like
TAS. CAS and case for interprocessor or inter -
task communications and a hardware line
(Bric) for bus locking. An instruction -
continuation facility allows easy transfer
from one processor to another.

Execution of the special instructions
forces assertion of the RT-1C signal (read -
modify -write cycle) and thus causes the bus
to lock. Any alternative bus masters in the
system must wait until the negation of the
12? -1C signal before they can take control of the
bus.

Instruction TAS (test and set an operand) is
the same as that on the 68000 processor and
allows implementation of flag variables for
globally -shared memory blocks. This in-

struction allows the testing and setting of a
variable to be performed in an indivisible
cycle.

With the 68000 this indivisible cycle is
achieved by keeping the address -strobe sig-
nal (Z) asserted throughout the read -
modify -write operation. You can see this in
Fig.4 where the processor reads a memory
location, tests the data item and may modify
it and then write it back out to memory. This
cycle is carried out without negation of the
address strobe. With the 68020, execution of
this type of cycle is further indicated by
assertion of the 121'1C signal.

Flags are very important elements in the
implementation of any multitasking/
multiprocessor system. In these types of
application flags are used to control access to
globally -shared memory blocks. If a task or
processor needs to gain access to one of
these memory blocks it must test the associ-
ated flag to determine whether the block is
presently being used. If the flag is clear then
the task (processor) will claim control of that
memory block by setting that flag. It should
then be guaranteed sole access to that
particular block.

If your system is configured such that
reading and testing of the flag is im-
plemented through one instruction and
setting of the flag is implemented through
another instruction then it is possible that a

number of tasks (processors) may gain ac-
cess to the memory block at one time.

This situation can arise if task A for
example reads the flag and, finding it clear,
decides to set it and thus claim access to the
block. Task B may then interrupt task A (in a
multitasking environment there may well be
a preemptive -timer interrupt) and it too may
read the flag associated with the memory
block and also find it clear because task A did
not finish writing the data. Task B claims the
memory block by setting the flag.

The preemptive interrupt may occur
again and reconstitute task A. Execution of
task A continues from where it detected the
flag as being 'clear and continue' by setting
the flag to claim the memory block.

In this way, two tasks concurrently ex-
ecute the same memory block and as a result
there is a risk of data corruption. To remove
this possibility, testing and setting of the flag
must be performed in an indivisible cycle,
i.e. with no interrupts or bus arbitration,
which is done using the TAs instruction.

This read -modify -write class of instruc-
tion is further expanded by as and CAS2.
Compare -and -swap -with -operand, CAS, is an
extension of the TAs instruction and allowing
data items (byte, word or long word) to be
compared and swapped. This instruction
could for example be used in the manipula-
tion of linked lists when a new item is
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required to be inserted for example.
A copy of the old starting pointer must

first be put at the base of the new item block
and then the pointer to the new item block
must be updated into the starting pointer
area. To perform this reliably, updating of
the new starting pointer must be executed
using an indivisible cycle.

The first operation is to place a copy of the
old starting pointer at the base of the new
linked items block. This new item is starting
address must now also become the starting
address of the linked list. If after placing the
old starting pointer at the base of the new
item the present process, task A, was inter-
rupted then task B could intervene, placing
its own new item in the linked list.

The pointer at the base of task A'S item is
no longer the next item in the linked list - it
doesn't know of the existence of task B's
item. To remedy this problem it is necessary
to retest the start pointer before you update
it.

This can simply be done by using the
instruction CAS DC, uu, START. To give an
example, the existing starting pointer is
copied into data register pc and then by
using the cas instruction the value in this
register (old starting pointer) is compared
with the present starting pointer (START). If
these two are the same then the starting
pointer is updated with the value in the other
data register, ou, (the new starting pointer).
If the values in data register, pc. and START

don't compare (i.e. the START pointer has
subsequently been changed) then the update
is not performed and integrity of the linked
list is preserved. This function is again
performed as an indivisible operation and its
bus activity is shown in Fig.5.

Instruction CAS2 is identical to CAS except
that it can be used to compare and update
two operands within the same indivisible
cycle. This is of use in maintaining doubly -
linked lists i.e. items with both a next -item
pointer and a last -item pointer.

MODULE SUPPORT

In comparison with the 68000, the 68020
has more levels of access control than just
the supervisor/user split as on previous
M68000 processors. Two instructions cALLm

and RIM (call module and return from mod-
ule) can be thought of as advanced sub-
routines used to gain access to other levels of
security.

This feature enhances the computer oper-
ating system by allowing a number of layers
or shells to be created around the computer
kernel. With this type of system the 68020
can monitor attempts by the user to gain
access to higher levels of security than
permitted. In this case an access level excep-
tion will be taken by the processor and an
error condition will be flagged. Figure 6
shows what such a system could look like in
an operating system application.

In modern computing there are many
areas where this mechanism could be used
to give more security to an operating system.
For example, consider an applications pro-
grammer who would like to access a large
database to obtain personal details about an
employee. For this example the programmer
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Fig.5. Execution of the CAS

instruction (compare
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would need to have access permission to
obtain this information. In addition the
programmer needs to be prevented from
updating that information, this being a
function of the database manager or system
administrator. Another area of use could be
in the Unix operating system to set up
different shells. Typically Unix runs with a
Bourne shell, however other layers or shells
are available for Unix; in addition user
generated shells can be created.

The 68020 can be used to achieve these
features by a combination of software and
external hardware. The execution of the
CALLM instruction is

CALLM #<data>,<e.a.>

This instruction is very similar to JSR (jump
to subroutine), except that the immediate
data value is the number of bytes of argu-
ment to be passed via the stack to the called
module. Effective address <e.a.> is the
actual address of the module descriptor in
memory.

The module descriptor can be thought of
as a gateway through which the calling
program must gain access. The module
being called can be thought of as a sub-
routine that is to act upon the data argu-
ments passed to it. This module can be the
same priority level or different to that of the
caller. Figure 7 illustrates the procedure
that the MC68020 goes through during
execution of the cALLm instruction.

The CALLM instruction acts as follows. The
effective address (<e.a.>) in the instruction
points to the address of the module descrip-
tor or gate to find control information. At
the same time, the MC68020 creates a
module -stack frame similar to an interrupt.
The module descriptor contains the follow-
ing information.

- How arguments are to be passed to the
called module (option field). They can be
passed either under the module stack or

through an indirect pointer in the stack of
the calling module.

- Descriptor type (type field). Two types are
used; one in which there is no change in
access rights (where the module stack is

11111
ccst
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O

II III CI
c'kt

t et) -

Fig.6. A typical computer can be thought of
as layers of protected software programs.
At the heart of the computer is the kernel.
This is code written such that it will inter-
face directly to the computer hardware.
This will typically be the highest priority
code and, as such, runs in supervisor
mode. Other layers that need protecting
from the user programs include database
and applications software, these being
accessible only to users with high access -
permission privileges, e.g. system adminis-
trators.
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CALLM filzdata>, <ea..*

Opt type 'saved access Level

'Condition codes

'Argument count

(Reserved)

Module descriptor
pointer

Saved program
counter

Saved module data
area pointer

Saved stock
pointer

Arguments
( opt,onal )

15 0

 ea is effective address

Stack
pointer

H

15

Opt 1 type

Access level

Module entry
word pointer

Module data
area pointer

Saved stock
pointer value

Additional user
defined information

15 0

Registers to be saved

Module program

IReturn to module instruction

Fig.7. CALLM can be thought of as an advanced subroutine. On executing the instruction the
68020 places information on the supervisor stack; this is called the module stack frame.
The effective address given in the instruction (<e.a.>) points to the address in memory of
a module descriptor containing specific information about the module being called.
Within the module descriptor is the actual address of the program to be executed.

Fig.8. Implementing
access -level support re
quires external hardware
at these addresses in
c.p.u. memory. Four long
words are used to control
access privilege and
eight long words are
used to contain addres-
ses of up to eight module
descriptors.

100 00

10004

10008

1000C

31 23 9

CAL I Unused reserved)
STATUS

I

IAL I

DAL +

10040 Function code 0 descriptor address
10044 Function code 1 descriptor address

1005C 1 Function code 7 descriptor address
1

created on the calling module) and the
other where there is a change in access
levels (a change of stack pointer may be
needed).

- Called module access level.

- Stack address of the called module. Note
that the first word of the module program
indicates the registers used in the pro-
gram; this is interpreted by the 68020 in
such a way that the processor knows which
registers to place on the stack.

- If the access change requires a change of
stack pointer, the old value is saved in the
module and all the arguments are copied
to the new stack.

- User -defined information, for example a
count of the number of times the module
has been accessed within a certain task.

The module stack frame contains informa-
tion needed by the processor to continue
program execution from the instruction
following the CALLM. Arguments passed to
and from the module are placed on the stack
before execution of the call module instruc-
tion. If there is a change in the stack pointer
requested from the module descriptor, this

is requested and the arguments are copied
onto the new stack, typically for access -level
changes.

This does not offer a great deal of protec-
tion for this system, since the user can
obtain access to a higher -privilege level
simply by reading the module address in the
descriptor. For this reason, the protection
mechanism is designed into the 68020 as
one of the special c.p.u. functions. Any
request for change of access level causes the
processor to execute a c.p.u.-space cycle.
While processing a type #01 (a module call
for which there is a change in stack pointers)
descriptor the CALLM and RIM instructions
communicate with external access -control
hardware in c.p.u. address space at the
address shown in Fig.8. These registers
would typically be designed into a memory -
management unit as an aid to the protection
mechanism (as with the 68851 paged mem-
ory management unit). As the communica-
tion to these registers is performed by the
c.p.u. microcode, the user is unaware of
these operational checks. The current
access -level register (CAL) contains the access
level of the currently executing module. The
increase access -level register (LAL) is the

register through which the calling module
requests increased access rights and the
decrease access -level register (UAL) is the
register through which the processor re-
quests decreased access right. These regis-
ters are updated from the module descriptor
stack frame.

The access -status register allows the pro-
cessor to determine from the external hard-
ware whether an intended access -level tran-
sition is valid. During the CALLM instruction,
the processor uses the descriptor register to
communicate the address of the type #01 or
descriptor.

The RIM instruction is executed as the last
instruction of the called module and is used
to restore the original information to the
processor and to the next instruction to be
executed. After the RIM instruction has ex-
ecuted, resultant arguments will be resident
on the stack for the program to use.

Support for up to eight levels of access can
now be supported, as opposed to the pre-
vious user/supervisor mode on other
M68000 -family processors.

David Burns and David Jones are with
Motorola in East Kilbride.

Futurebus group
starts up

In response to the growing number of
requests for product and information on
Futurebus, the IEEE's 32 -bit bus standard, a
number of UK companies have established
the Futurebus Manufacturers and Users
Group. It is the intention of the group to give
the UK an early start and a competitive edge
in Futurebus products, an opportunity that
has been sadly missed with other buses.
notably VME.

Twenty invited representatives of 12 UK
companies attended the inaugural meeting
held last autumn, hosted by National Semi-
conductor at Swindon. Nat Semi said they
were the only manufacturer with Futurebus
devices in production, offering a range of
transceivers, drivers and receivers which
conform to the P896 specification.

Also present and with product available was
BICC-Vero who have backpanels, termination
networks, extender cards and prototyping
boards in current production. A number of
other companies are known to have
Futurebus products under development in-
cluding an advanced multiprocessor system
based on multiple 32332's, graphics engines
and systems for high-speed parallel proces-
sing, but most of these products are firmly
'under wraps', with the intending suppliers
playing their cards close to their chests. Apart
from National Semiconductor, at least four
other manufacturers are known to have I.s.i.
products for Futurebus currently under de-
velopment.

The potential market for Futurebus is said
to be vast, with very little competition in the
32 -bit stakes. It is claimed that it has all the
answers to the 'bus driving problem', cache
coherency, bus arbitration and bandwidth
whilst also being manufacturer and technolo-
gy independant. (news, Jan 1984, page 45).

Represented at the inaugural meeting
National Semiconductor, BICC-Vero, Dean
Microsystems, Plessey, British Telecom, Fer-
ranti, Array Consultants, Fraser Williams
Industrial Systems. Spectra-Tek and the DTI.
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