03/Z5/36 01.09

BN . SEMICONDUCTOR

From vIo1orola DesIgn-NET N; bUZ-Z43-6591 Fax: 6Uz-244-oous

MOTOROLA

TO Wouler ae ywaai usne
Order this document
as AN437/D

“

AN437

TECHNICAL DATA

Using the MC68332 Periodic Interrupt Timer

By Mark Maiolani
Motorola Ltd
East Kilbride

INTRODUCTION

This application note demonstrates the use of the
MC88332 periodic interrupt timer by implementingan
interrupt driven real-time clock in software.

As well as detailing the use of the PIT, the general use
and initiglisation of interrupts on the MC88332 is
covered, especially from the 'C’ programming
language. List files are also included to show the

resultant assembly level program.
THE PERIODIC INTERRUPT TIMER

The Periodic Interrupt Timer, or PIT, provides a way of
generating interrupts to the MCB8332 core, i.e. the
CPU32, at programmable regular intervals.

Essentially the PIT, shown in figure 1, consists of an
E-bitdown-counter preceded by a + 4 prescaler, which

generates an interrupt and re-ioads with a programmed
value when zero is reached.

The 8-bit value to be re-loaded is stored in the Periodic
Interrupt Timing Register (figure 2), as bits PITR7-0. The
PIT period can therefore be adjusted by modifying this
value, or disabled by setting it to zero.

A prescaler bit, PTP, can extend the range of the PIT
period, by switching an additional + 512 prescaler into the
counter input when PTP =1.

With a 32.768 kHz oscillator, the resultant period can be
in the range 122us to 15.94 seconds as shown in the
example table of figure 3. The formula to calculate the PIT
periods is:

PIT period
= (PITR value * 4) / (EXTAL freq. / Prescaler)

where Prescaler = 512 if PTP =1, or 1 for PTP = 0.

PITR7-0
EXTAL PIN PTP BIT
| 4 P
CLOCK [~ + 4 P> 8-BIT
CLOCK PRESCALER MUX MODULUS COUNTER
DISABLE [~ ™| (+512) .
PIT
INTERRUPT

Figure 1. Periodic Interrupt Block Diagram

B L @ MOTOROLA

© MOTOROLA LTD., 1980

| U3/28/86 01,09 From mMoltoroia Design-NET rn. 6UZ-244-6391 rax: s02-244-6683 TO vwouter ae waal 04z

PITR SYFFA24 .
5 14 13 12 11 10 9 8 el B 5 4 3 2 1 0
[| l
| | PITR| PITR| PITR| PITR| PITR| PITR| PITR| PITR
0 0 | 0.| 0 ! 6| 0 0 | FTP| ", 5 L e ‘ 1 0

Note: PTP takes the negated value of the MODCK pin on rising edge of RESET
Y = F if MM bit of MCR is set, Y = 7 if MM bit is clear

Figure 2. Periodic Interrupt Timing Register

PITR PIT Period
$0000 Periodic Interrupt Disabled
$0001 122 us
$0002 | 244us
$0004 488 pus
$0008 977 us_
$000F 1.83 ms
$0020 3.80 ms
$0040 7.88 ms
$0080 15.6 ms
$00A0 19.5 ms
|___S00FF 31.1 ms
| $0100 Periodic interrupt Disabled
| $0101 62.5 ms
$0102 125 ms
$0104 250 ms
$0108 500 ms
$0110 1 second
$0120 2 seconds
| $0140 4 seconds
$0180 8 seconds
$01A0 10 seconds
$01FF 15.9 seconds
Figure 3. Example PIT periods

MOTOROLA
2

ANA437/D

—

03/256/96 01.09 From motloroia oesign-NET Fni 602-244-6351 Fax: 602-239-6693 To woulter ae waal usnz

CONFIGURING THE PIT INTERRUPT As the PIT is part of the System Integration Module in
the MC68332, the main SIM Module Configuration
Register (figure 5) also has to be initialised for the

: T IT ister i = iodi rr :
’ he second PIT register is the Periodic Interrupt resultant interrupts to be handled correctly.

Control Register, or PICR (figure 4), which is used to
configure the interrupt generated by the PIT. The The Interrupt Arbitration Bits, IARB3-0, are used for
Pericdic Interrupt Request Level bits determine the arbitration when interrupts of the same level are
priority of the interrupt from 1 to 7. If the PIRQL field genarated simultaneously by different modules on

s set 10 all zeros, the interrupt is disabled. the Inter Module Bus, such as the SIM and QSM. A
zero value for a module's IARB field results in all
interrupts thatit generates being treated as spurious,
whereas a value from 1 to $F determines its pricrity on
the IMB, from lowest to highest. It is recommended
that each module on the IMB should be programmed
with a different IARB number to allow the arbitration
process to function as above.

When the CPU32 detects an interrupt, it requests the
number of the vector which contains the address of
the exception handier routine. The vector number
returned in response to a PIT interrupt is determined
by the Periodic interrupt Vector field in the PICR. This
can be any vector number from 0 to 255, aithough
normally it would be set to indicate one of the CPU32
user defined vectors, numbered from 64 to 255,

PICR $YFFA22 |
' 15 14 13 42 1 =10 W8 8 7 6 5 4 3 2 1 0
| I T | |
| o . : J' E]PiRQL PIRQUPIRQL PIV | PIV| PIV | PIVv | PIV | PIV | PIV | PIV | |
, | © [2 | 1 oRlEZl ¢ | s ‘ Al e 0 | |
] | |
Figure 4, Periodic Interrupt Control Register
MCR : SYFFA00
15 14 13 12 111 16 9 8 7 6 5 4 3 2 1 0
, | ' ! !
| EXOFF| FRZSW| FRZBM| © SLVEN‘ o |SHONISHERESEYI Wil o | o e 'A?BW s
! I
r | [| |

Figure 5. Module Configuration Register

AN43Y/D MOTOROLA

3

o ool

U3rE8/306 01.09 From mMiolorola Design-nNcT rn. B02-244-0091 rax: suz-z49-6693 To woulier ae vaal oene

INITIALISATION OF THE CPU32 VECTOR I the PICR is set to assign the PIT interrupt 10 vector
TABLE number 84, which is the first user-defined vector, then
the four bytes starting at address ((VBR) + (64 * 4))
should be programmed with the address of the PIT .
exception handler.

Before the PIT interrupt can be enabied, the address
of the software routine to be executed in response to
the interrupt, ie. the exception handler, has to be
programmed into the correct vector table entry. USING THE PERIODIC INTERRUPT
y
. FROM THE ‘C’' LANGUAGE
The starting address of the vector table is defined by

the CPU Vector Base Register, in a similar manner to _
the 68010/20 MPUs. The PIT (or indeed any other MC68332 interrupt) can

be configured efficiently with very few 'C’ instructions.
As the table consists of 256 vectors (figure 6), where ~ 11iS IS Shown in the example program ‘33ZATC’,
each vector is a byte address, the address of vectorn ~ Where the vector table is initialised with the address
can be calculated as: of the exception handler, clock().

Address = VBR + (n* 4)

Vector Offset Vector Assignment Vector Number
000 | Reset: Initial Supervisor Stack Pointer | 0 |
004 | Reset: Initial Program Counter 1 |
008 |_Bus Error 9
00C | Address Error i3
010 |_lliegal Instruction 4
014 |_Zero Divide '8
018 | _CHK Instruction 5
01C |_TRAPcc, TRAPY Instructions {7
020 |_Privilege Violation 8
024 | Trace g
028 ! Line 1010 Emulator 10
02C | Line 1111 Emulator 11
030 | Hardware Breakpoint 12
034 | (Reserved, coproc protocol violation) 13
038 | Format Error 114
03C | Unintialised Interrupt 15
040 -05C | (Unassigned and Reserved) '16--23
080 | Spurious Interrupt | 24
064 - 07C [Level 1-7 Interrupt Autovectors 25 - 31
080 — 0BC | TRAP #0-15 Instruction 82 - 47
0CO0 - 0E8 | Reserved for Coprocessor) 48 — 58
OEC -0FC | (Unassigned and Reserved) 59 - 63
100 - 3FC | User Interrupt Vectors Il 64 -255
Figure 6. CPLU32 Vector Table .
P e SRR e SR L VT S L RS AN A i g s e i e & S e S PR
r:&oronou\ AN437/D

[

03/28M06 U102

AN437/D

MOTOROLA

The program line :
*(long *N(vecno * 4) + vbr) = (long)clock:

with the resultant assembly code :

move.| #clock,256

takes the address of the routine clock, convertsittoa
long value, and stores it in the location pointed to by
the long value ((vacne * 4) + vbr).

Note that this program assumes that startup code has
initialised the CPU VBR register to a fixed value, as it
defines 'vbr' to be ‘0x00’. An alternative way to
determine the value of the VBR, which is shown
commented out in '332RTC', is to import its value
directly from the startup code.

One important point to remember when dealing with
interrupts in high level languages is that the exception
handler must always be terminated by the assembly
instruction ‘Return from Exception’, RTE, rather than
the ‘Return from Subrouting’ or RTS instruction. With
some Compilers a directive can be used to force the
use of RTE to terminate a routine instead of RTS.

The program ‘332RTC' uses the '_mod2__’ directive
available on the Introl 332 compiler for this purpose.

Other methods of vectoring interrupts can be used,
either involving user written assembly level exception
handlers which will ‘re-vector' the interrupt to the
handler routine via @ JSR instruction, or alternative
methods 'built-in” to the compiler.

From MOoIorola Design-NeET 191; BUZ-244-6391 rax; 6UZ-243-6693

TO wouter ae ywaal ornz

Although these will have the disadvantage of increasing
the response time to the interrupt, they will allow the
exception handler to be called by the program itself,
which is not possible if the routine terminates with
RTE.

332RTC - GENERAL INFORMATION

The program '332RTC’ was developed on the
MC68332 BCC, and runs under the ‘332Bug’ monitor.
Because of this, the SIM MCR registeris not modified,
butis leftin the state programmed by the monitor. As
the PIT interrupt request level is programmed to level
6, the CPU32Z interrupt mask must be pragrammed to
5 or less for the interrupt to be recognised. This miay
be achieved directly from the monitor or by including
this function in the assembly startup code for ‘332RTC".

The PIT interrupt, which is programmed 1o occur at
1Hz frequency, vectors to the routine clock. This
updates the glabal time variables (hours, minutes and
seconds) before printing a display of the time via a
PRINTF instruction. The ‘PRINTF’ instructicn from the
Introl 332 compiler is directed to the MC88332 SCI
port, and allows the messages to be viewed on a PC
connected to the BCC or EVS RS232 port,

5

—

U3/28/86 01.09

From wvoiofola Design-NET Fn b0Z2-244-6091 Fax, o0Z-Z244-0693 TO woulter ae waal

C SOURCE CODE - 332RTC.C

x /* 332RTC.C 17/8/90

=

x © demo showing use of periodic interrupt timer toc implement a real

i time clock in software. Demonstrates the use of interrupt driven

L software in Introi C

-

» The interrupt handler, clock (), updates the time variables, and also
w prints the time for demonstration of operation

¥ Pericdic interrupt is programmed to level 6 so startup code must
set the interrupt mask to 5 or less

Written py:
" Mark Maiolani, Motorola East Kilbride

=/
$include "332defs.h" /¥ General definitions ®/

fdefine pitr Oxfffffa24 /* Address of PITR assuming MM pit =1 =/

idefine pier Oxfffffa22 /* ., 0 DICR | 4 o ®/
tdefine vecno (Ox40 /* Vector number used */
#define vbr Ox00 /* Assume VBR =0 */

/= import vbr Or import from startup file */

i Global Variables */

byte hcu:sro,mlnutes=0,seconds=0:

/* function prototypes */
void clock();

madin()
{
/™ Set up interrupt vector (number vecno) to point to routine clock */
*(long *) ((vecno * 4) + vbr) = {long)clock:

r* Set PITR for 1 second period */

ML T 1T

o&nz

u3/28/M86 U1:09 From mMotoroia pesign-NET Fn: 602-244-6591 Fax: 6UZ-239-6693 TO wourter ae waal 0enz

C SOURCE CODE - 332RTC.C

‘ - /* 332RTC.C 17/8/9C

C demo showing use of periodic interrupt timer to implement a real
time clock in software. Demonstrates tne use of interrupt driven
software in Introl C

Pericdic interrupt is programmed te level 6 so startup code must
t the 5

interrupt mask to 5 or less

" Mark Maiolani, Motorola East Kilbride
=
L}
#include "332defs.h" /* General definitions x/
tdefine pitr Oxfffffa24 /* Address of PITR assuming MM bit =1 */
¥define picr Oxfffffa22 /* ,, 0+ PICR e o =/ |
#define vecnc 0x40 /* Vector number used */
#define vbr (0x00 /* Assume VBR =0 */ |
/™ import vbr Or import from starctup file w/
il Global Variables */

byte hours=0,minutes=0, seconds=0;

/

/* function prototypes */
void clock();

maini()
{
> Set up interrupt vector (number vecno) to point to routine clock */
*(long *) ((vecne * 4) + vbr) = (long)clock:
/" Set PITR for 1 second period */
*{word *) (pitr) = Ox0110;
i Set PICR for level € interrupt vector number 0x40 */
*{word *) (picr) = Ox0640;
f* Leop forever =/
while (1);
}

void _ mod2 clock()
{
seconds++;
if (seconds>59)
{
seconds=0;
minutes++;
if (minutes>359)
(
minutes=0;
hours++;
if (hours>12) hours=1;
)
}
printf ("\r%02d:%02d %02d", hours,minutes, seconds) ;

. 1

AN437/D MOTOROLA
7

0372896 U1.09 From mMotlorola oesign-NeET N BUZ-234-6291 IFax: 6UZ2-244-6693 TO wourter ae vwaal 081z

MERGED C SOURCE AND ASSEMBLY QUTPUT - 332RTC.C

. * /* 332RTC.C 17/8/90

C demo showing use of periodic interrupt timer to implement a real
cime clocx in software. Demonstrates the use of interrupt driven
scftware in Introl C

The interrupt handler, clock(), updates the time variables, and also
Prints the time for demonstration of operation

- Periodis interrupt is programmed to level & so startup code must
* set the interrupt mask to S or less
* Written by:
» Mark Maiolani, Motorcla East Kilbride
-
.. */
* #include "332defs.h" /* General definitions 1/
* $define pitr Oxfffffazd /™ Address of PITR assuming MM bit =1 =/
* #define picr Oxfffffa22 £ NG P BTCR Y Sy 1 e i
& #define vecno Ox40 /* Vector number used "/
* #define vbr 0x00 /* Assume VBR =0 */ |
= /* import vbr Or import from startup file */
* I* Global Variables */
b byte hours=0,minutes=0, seconds=0;
6 00000000 ds.w v}
7T 00000000 hours: I
’ 8 00000000 00 de.b (¢]
2 00000001 ds.w 0
10 00000002 minutes:
11 00000002 00 de.b 0
12 00000003 ds.w 0
13 00000004 seconds:
14 00000004 00 de.b 0
16 section.text
-
x /= function prototypes */
* voeid eclock():
£ 3
. main ()
18 00000000 main: fbegin
18 00000000 4eS6fff0 link fp, #-16
20
* {
" 1 Set up interrupt vector (number vecno) to Foint to routine clock =/
* *(leng *) ((vecno * 4) + vbr) = (long)eclock;
22 00000004 >21£fc000C00C00100 move.l #clock,256
*
* /* Set PITR for 1 second period */
" *{word *) (pitr) = 0x0110;

AN437D x

MOTOROLA

[

0372526 01.08 From mMotoroia Design-NeET FN: BUZ-244-6391 rax: 6U2-239-5653 TO wWoulter ae vaa! 1z

' 24 0000000c 31£c0110fa24 move.w #272,-1500
X /* Set PICR for level 6 interrupt vector number Ox4D */
¥ * (word *) (picr) = 0x0640;
26 00000012 31fc0640fa22 move.w #1600,-1502
27 Q00000 20.4
= /¥ Loop forever ¥/
* while (1);
29 00000018 &0fe bra 2C.4
- |
31 0000001a 1
32
33 0000001a 4eSe unlk fp
34 00000Cle 4e75 rts
35 0000001e fend
* void __mod2__ clock()
38 000000le clock: fpegin
39 00000012 4eS5S6ffce link fp, #-52
40 00000022 4Beelf07ffd0 movem.1d0/dl/d2/a0/al/a2/a3/ad, (-48, fp)
41 00000028 >45£900000C00 lea minutes, a2
42 0000002e >47£900000000 lea hours, a3
45 00000034 >49f900000000 lea seconds, a4
A {
x seconds++;
45 0000003a 5214 add.b #1, (ad) |
* if (seconds>59)
47 0000003c 0cl4003b cmp.b #59, (a4)
48 00000040 6318 bls 71.10
= {
x seconds=0;
50 00C00042 4214 clr.b (ad)
v minutes++;
52 00000044 5212 add.b #1, (a2)
* if (minutes>59)
54 00000046 0e12003b enp.b #59, (a2)
55 00000042 630e bls 21:20
* {
* minutes=0;
57 0000004c 4212 clr.b (a2)
b hours++;
59 0000004e 5213 add.b #1, (a3) ‘

MOTOROLA AN437/D
n

U3rZ25/2e J1.09 From Motoroia Design-NET rn. 60Z-Z244-6331 rax. suZ-2944-6593 TO ywouler ae vyaal 11712

- if (hours>12) hours=1;
61 00000050 0c13000¢ cp.b #12, (a3)
62 00000054 6304 bls 21,10
€3 (C0D0CO56 16bec0001 move.b #1, {a3)
64 0000005a 21,10
85 section.strings
X }
* }
* printf({"\r%02d:%024d %02d",hours, minutes, seconds) ;
€7 00000000 ds.w 0
68 00000000 251
€9 00000000 ©d253032643a2530 de.b 50d, "%02d:%02d %024"', 500
70 section.text
7 line 63
72 00C0005a 7000 move.l #0,d0
73 0000005¢ 1014 move.pb (a4),d0
74 0000005e 2e80 move.l d0, (sp)
75 DCOODDO60 7200 move.l #0,dl
76 00000062 1212 meve.b (a2),dl
77 00000064 2£01 move.l dl,-(sp)
78 (00000066 7400 move.l #0,d2
7% 00000068 1413 move.b (a3),d2
80 0000006a 2£02 move.l d2,-(sp)
81 0000006c >487900000000 pea 251
82 00000072 >4eb5%00000000 isr printf
83 (00000078 4fef000c lea {12,sp),sp
% }
85 0000007¢ 2.2
86 0000007c 4ceelf07£fd0 movem.l (=48, £fp) ,d0/d1l/d2/a0/al/a2/a3/a4
7 00000082 4eSe unlk fp
88 00000084 4e73 rce
89 00000086 fend
30 import princf
91 end
Section synopsis
1 00000005 (5) .data .'
2 00000086 (134) .cext -
3 00000010 ¢ 16) .strings -r
Symbol table |_'.
.data 1 00000000 |
.text 2 00000000 | hours E 100000000 | minutes E 1 00000002 | printf I C 000CCD00
.strings 3 000C0000 | cleck E 2 000000le | main E 2 00000000 | printf C 0000C000
Symbol cross-reference ,
.data *q
.strings *65
.text *16 =710
clock 22 *3B
hours 7 42 .
main x18
minutes *10 1
printf 82 *90
seconds *13 43

@
O e Bl 2 T s T e Y S R |

AN437/D MOTOROLA
n

Motorola resarvas tha right to make changes without further notice to any products herein to iImprove reliability, function or design. Motorola does not assume
any liability arising out of the application or use of any product or circuit described herein; neither does it convey any lisense under its patent rights nor the rights
of cthers. Motorola products are not cesigned, intended, or authorized for use as components in systems intended for surgical implantinto the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal
injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or uriauthorized application, Buyer shall indemnify and
hoid Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expanses, and reasonatle
antorney fees arising out of, directly or indirectly, any daim of personal injury or death associated with such uninterded or unauthornized use, even if such claim
alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and @ are registered trademarks of Motorola, Inc. Motorola,
Inc. is an Equal Opportunity/Atfirmative Action Employer.

Literature Distribution Centras:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.

EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milten Keynes, MK14 5BP, England. .
ASIA PACIFIC: Matorola Semiconduetors (11.K) Ltd.: Eiliesn Harssur Center, No. 2, Dai King Street, Tai Po Industrigl Estate, Tai e, N.T., Wong Kong,
JAPAN: Nippon Motorola Lid.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan.

Ba @D M OTORCLA P R S A

AN437/D

AMONIE THDVIED DN CBa 0781 DIOEMIAC LITeE 12,0CC asic THARDD

